1 |
Economopoulou P, Mountzios G. The emerging treatment landscape of advanced non-small cell lung cancer[J]. Ann Transl Med, 2018, 6: 138.
|
2 |
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66: 115-132.
|
3 |
Cardiothoracic Group, Radiology Branch. Chinese medical association,Low dose spiral CT lung cancer screening expert consensus[J]. Zhonghua Fang She Xue Za Zhi, 2015(5): 328-335.
|
4 |
Suzuki K, Koike T, Asakawa T, et al. A prospective radiological study of thin-section computed tomography to predict pathological noninvasiveness in peripheral clinical IA lung cancer (Japan Clinical Oncology Group 0201)[J]. J Thorac Oncol, 2011, 6: 751-756.
|
5 |
Zhang GZ, Bai CX. Chest low-dose CT screening for lung cancer is and is not[J]. Zhonghua Jie He He Hu Xi Za Zhi, 2015, 38(4): 242-245.
|
6 |
Tang W, Wu N, Huang Y, et al. Results of low-dose computed tomography (LDCT) screening for early lung cancer: prevalence in 4,690 asymptomatic participants[J]. Zhonghua Zhong Liu Za Zhi, 2014, 36(7): 549-554.
|
7 |
Zhang Y, Hong QY, Shi WB, et al. Value of low-dose spiral computed tomography in lung cancer screening[J]. Zhonghua Yi Xue Za Zhi, 2013, 93(38): 3011-3014.
|
8 |
Ferreira JJ, Oliveira MC, de Azevedo-Marques PM. Cloud-based NoSQL open database of pulmonary nodules for computer-aided lung cancer diagnosis and reproducible research[J]. J Digit Imaging, 2016, 29(6): 716-729.
|
9 |
Freedman MT. Comment on "Maximum-Intensity-Projection and Computer-Aided-Detection Alogorithms as Stand-Alone Reader Devices in Lung Cancer Screening Using Different Dose levels and Reconstruction Kernels" [J]. AJR Am J Roentgenol, 2017, 208(3): W132.
|
10 |
Kobayashi H, Ohkubo M, Narita A, et al. A method for evaluating the performance sf computer-aided detection of pulmonary nodules in lung cancer CT screening: detection limit for nodule size and density[J]. Br J Radiol, 2017, 90(1070): 20160313.
|
11 |
Ebner L, Roos JE, Christe A. Reply to "Comment on Maximum-Intensity-Projection and Computer-Aided-Detection Algorithms as Stand-Alone Reader Devices in Lung Cancer Screening Using Different Dose Levels and Reconstruction Kernels" [J]. AJR Am Roentgenol, 2017, 208(3): W133.
|
12 |
Huang P, Park S, Yan R, et al. Added value of computer-aided CT image features for early lung cancer diagnosis with small pulmonary nodules: A matched case-control study[J]. Radiology, 2018, 286(1): 286-295.
|
13 |
Al MB, Brennan PC, Mello-Thoms C. A review of lung cancer screening and the role of computer-aided detection[J]. Clin Radiol, 2017, 72(6): 433-442.
|
14 |
LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436.
|
15 |
Silver D, Huang A, Maddison CJ, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484-489.
|
16 |
Moravcík M, Schmid M, Burch N, et al. DeepStack: Expert-level artificial intelligence in heads-up no-limit poker[J]. Science, 2017, 356(6337): 508-513.
|
17 |
Nishio M, Nagashima C. Computer-aided diagnosis for lung cancer:usefulness of nodule heterogeneity[J]. Acad Radiol, 2017, 24(3): 328-336.
|
18 |
Ebner L, Roos JE, Christensen JD, et al. Maximum-intensity-projection and computer-aided-detection algorithms as stand-alone reader devices in lung cancer screening using different dose levels and reconstruction kernels[J]. AJR Am J Roentgenol, 2016, 207(2): 282-288.
|
19 |
Young S, Lo P, Kim G, et al. The effect of radiation dose reduction on computer-aided-detection(CAD) perfoemance in a low-dose lung cancer screening population[J]. Med phys, 2017, 44(4): 1337-1346.
|
20 |
Kobayashi H, Ohkubo M, Narita A, et al. A method for evaluating the performance sf computer-aided detection of pulmonary nodules in lung cancer CT screening:detection limit for nodule size and density[J]. Br J Radiol, 2017, 90(1070): 20160313.
|
21 |
Ohkubo M, Narita A, Wada S, et al. Technical Note: Image filtering to make computer-aided detection robust to image reconstruction kernel choice in lung cancer CT screening[J]. Med Phys, 2016, 43(7): 4098.
|
22 |
Song QZ, Zhao L, Luo XK, et al. Using deep learning for classification of lung nodules on computed tomography images[J]. J Healthc Eng, 2017: 8314740.
|
23 |
Li W, Cao P, Zhao DZ, et al. Pulmonary nodule classification with deep convolutional neural networks on computed tomography images[J]. Comput Math Method Med, 2016: 6215085.
|
24 |
Ginneken VB. Fifty years of computer analysis in chest imaging:rule-based, machine learning, deep learning[J]. Radiol Phys Technol, 2017, 10(1): 23-32.
|
25 |
Gruetzemacher R, Gupta A. Using deep learning for pulmonary nodule detection & diagnosis. Twenty-second Americas conference on information systems, San Diego 2016.
URL
|
26 |
Nibali A, He Z, Wollersheim D. Pulmonary nodule classification with deep residual networks[J]. Int J Comput Ass Rad, 2017, 12(10):1799-1808.
|
27 |
Hussein S, Gillies R, Cao K, et al. TumorNet: lung nodule characterization using multi-view convolutional neural network with gaussian process. 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne, VIC, 2017: 1007-1010. doi: 10.1109/ISBI.2017.7950686.
URL
|