切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2020, Vol. 13 ›› Issue (02) : 223 -228. doi: 10.3877/cma.j.issn.1674-6902.2020.02.020

论著

肺小结节危险因素分析及恶性预测模型的建立
朱妍1, 王剑2,()   
  1. 1. 212000 镇江,江苏大学医学院
    2. 212000 镇江,江苏大学附属人民医院
  • 收稿日期:2019-11-08 出版日期:2020-04-25
  • 通信作者: 王剑

Analysis of risk factors of small pulmonary nodules and establishment of malignant prediction model

Yan Zhu1, Jian Wang2,()   

  1. 1. School of Medicine, Jiangsu University, Zhenjiang 212000, China
    2. Affiliated People′s Hospital of Jiangsu University, Zhenjiang 212000, China
  • Received:2019-11-08 Published:2020-04-25
  • Corresponding author: Jian Wang
引用本文:

朱妍, 王剑. 肺小结节危险因素分析及恶性预测模型的建立[J]. 中华肺部疾病杂志(电子版), 2020, 13(02): 223-228.

Yan Zhu, Jian Wang. Analysis of risk factors of small pulmonary nodules and establishment of malignant prediction model[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2020, 13(02): 223-228.

目的

分析恶性肺小结节的胸部CT特征及病理学结果,建立肺小结节恶性预测模型。

方法

回顾性分析镇江市第一人民医院2014-2018年诊断肺小结节患者,对其年龄、吸烟史、病理结果、结节最大直径、毛刺征、血管征、分叶征、空泡征、结节性质、结节部位等进行统计,并对血管征进行进一步分类:血管位于病灶旁或贴于病灶边缘;可见血管穿行于病灶。采用SPSS软件对上述各因素进行单因素分析,得出具有统计意义(P<0.05)的因素,再将有意义的因素进行二项Logist回归分析,并建立模型。

结果

预测模型为P=ex/(1+ex),x=0.269+(年龄×0.051)+(血管位于病灶旁或贴于病灶边缘×0.722)+(血管在结节中穿行×4.196)+(毛刺征×1.144)-(6.95×钙化)-(3.77×实性结节)-(2.21×磨玻璃结节),AUC为0.958,P<0.01,预测值为0.789,灵敏度87.1%,特异度94.3%,具有较高的准确性。

结论

建立的肺小结节的恶性预测模型具有较高的可信度。其中,血管穿行对肺小结节的良恶性判断具有较大的价值。

Objective

To analyze the characteristics of chest CT and the pathological results of malignant small pulmonary nodules and establish the malignant prediction model for pulmonary nodules.

Methods

The clinical data of the patients with pulmonary nodules admitted to our hospital from 2014 to 2018 were retrospectively analyzed. The information including the patients′age, smoking history, pathological results, nodule diameter, spicule sign, vascular signs, sign of lobulation, vacuole sign, nodule nature and nodule site was collected and analyzed. The vascular signs were further classified as the blood vessels being located next or attached to the edge of the nodules and the blood vessels passing through the nodules. Single factor analysis of all the factors was carried out by SPSS software and the statistically significant factors were obtained (if P<0.05). And then the significant factors were analyzed by binomial Logistic Regression analysis and the model was established.

Results

The predictive model was P=ex/(1+ ex), x=0.269+ (Age×0.051) + (Vessels located next to or attached to the edge of the lesion×0.722) + (Vessels passing through the nodules×4.196) + (Spicule sign 1.144)-(6.95×Calcification)-(3.77×Solid nodules)-(2.21×Ground glass nodules). In this study, the AUC was 0.958 (P<0.01), the predicted value was 0.789, the sensitivity was 87.1% and the specificity was 94.3%. Therefore, the accuracy of the predictive model for the malignant nodules was as high as expected.

Conclusion

The mathematical predictive model for malignant nodules established in this study has a high reliability. And the vascular signs have great values in the determination of the pulmonary nodules.

表1 肺小节患者临床资料
表2 肺部小节观察级及对照组单因素分析
临床资料 观察组[n=70,(%)] 对照组[n=286,(%)] t2 P 临床资料 观察组[n=70,(%)] 对照组[n=286,(%)] t2 P
年龄 55.5±10.87 60.24±10.61 -3.31 0.01 分叶征 无(44,25.3) 无(130,74.7) 6.82 <0.01
个数 n=1(53,22) n=1(188,78) -1.34 0.18   有(26,14.3) 有(156,85.7)    
  n=2(6,10.3) n=2(52,89.7)     毛刺征 无(43,24.9) 无(130,75.1) 5.74 0.017
  n=3(11,91.7) n=3(1,8.3)       有(27,14.8) 有(156,82.2)    
最大直径 14.4±7.5 16.4±7.2 -2.04 0.04 胸膜牵拉征 无(38,20.5) 无(147,79.5) 0.19 0.665
性别 男(33,20.4) 男(129,79.6) 0.09 0.76   有(32,18.7) 有(139,82.3)    
  女(37,19.1) 女(157,80.9)     肺门/纵膈淋巴结肿大 无(58,21.6) 无(211,78.4) 2.51 0.113
吸烟史 无(51,19.4) 无(212,80.6) 0.05 0.83   有(12,13.8) 有(75,86.2)    
  有(19,20.4) 有吸(74,79.6)     空泡征 无(57,23.6) 无(185,76.4) 7.24 <0.01
血管 无血管影(19,43.2) 无血管影(25,56.8) 55.5 <0.01   有(13,11.4) 有(101,88.6)    
  血管在结节中穿行(2,1.4) 血管位于病灶旁或贴于病灶边缘(119,70.8)     质地 SN(33,30.8) SN(74,69.2) 12.10 0.001
  血管位于病灶旁或贴于病灶边缘(49,29.2) 血管在结节中穿行(142,96.6)       PSN(29,16.7) PSN(145,83.3) 1.93 0.164
部位1 左肺(29,19.2) 左肺(122,80.8) 0.04 0.852   pGGO(8,10.7) pGGO(67,89.3) 4.86 0.027
  右肺(41,20.0) 右肺(164,80)     钙化 有(33,10.5) 有(281,89.5) 119.6 <0.01
部位2 上肺(29,17.2) 上肺(140,82.8) 1.28 0.259   无(37,88.1) 无(5,11.9)    
  非上肺(41,21.9) 非上肺(146,78.1)              
表3 二项Logistic回归分析
图1 对角段由绑定值生成
1
任成山,王关嵩,钱桂生. 慢性阻塞性肺疾病的成因及其治疗的困惑与希望[J/CD]. 中华肺部疾病杂志(电子版), 2019, 12(2): 127-141.
2
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
3
Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the Global cancer incidence and mortality in 2018: GLOBOCAN sources and methods[J]. Int J Cancer, 2019, 144(8): 1941-1953.
4
Jemal A, Bray F, Center MM, et al. Global cancer statistics[J]. CA Cancer J Clin, 2011, 61(2): 69-90.
5
Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65(2): 87-108.
6
张振显,杨爱莲,吴爱军,等. 多层螺旋CT动脉扫描及三维重建在孤立性肺小结节诊断中的应用比较[J]. 中国医学装备,2018, 15(09): 62-65.
7
王晓燕,肖继伟,万钰磊,等. 多层螺旋CT对肺小结节的诊断价值分析[J/CD]. 中华肺部疾病杂志(电子版), 2019, 12(2): 197-199.
8
Wood DE, Kazerooni E, Baum SL, et al. Lung cancer screening, version 1. 2015: Featured updates to the NCCN guidelines[J]. J Natl Compr Canc Netw, 2015, 13(1): 23-34.
9
Goldstraw P, Chansky K, Crowley J, et al. The IASLC lung cancer staging project: proposals for revision of the TNM stage groupings in the forthcoming (Eighth) edition of the TNM classification for lung cancer[J]. J Thorac Oncol, 2016, 11(1): 39-51.
10
MacMahon H, Naidich DP, Goo JM, et al. Guidelines for Management of Incidental Pulmonary Nodules Detected on CT Images: From the Fleischner Society 2017.[J]. Radiology, 2017, 284(1): 228-243.
11
American College of Radiology. Lung CT screening reporting and datasystem(Lung-RADS).2014.

URL    
12
荆 剑,张 靖. 肺结节活检和病理诊断在当前医疗实践中的必要性和可行性[J]. 肿瘤防治研究,2019, 46(11): 963-970.
13
Huang P, Park S, Yan R, et al. Added value of computer-aided CT image features for early lung cancer diagnosis with small pulmonary nodules: a matched case-control study[J]. Radiology, 2017, 286(1): 162725.
14
张建功,史 讯. PET/CT联合HRCT在诊断孤立性肺结节中的应用价值分析[J]. 中外医疗,2018, 37(23): 185-187.
15
廖雪燕,郑俊琼,王建文. 周围型肺癌CT诊断分析[J]. 中外医疗,2010(12): 165.
16
白少君. 联合多种高分辨CT征象对肺内孤立结节良恶性鉴别诊断价值[J]. CT理论与应用研究,2019, 28(1): 121-127.
17
周清华,范亚光,王 颖,等. 中国肺部结节分类、诊断与治疗指南(2016年版)[J]. 中国肺癌杂志,2016, 19(12): 793-798.
18
Hiramatsu M, Inagaki T, Inagaki T, et al. Pulmonary ground-glass opacity (GGO) lesions-large size and a history of lung cancer are risk factors for growth[J]. J Thorac Oncol, 2008, 3(11): 1245-1250.
19
Field JK, Smith RA, Aberle DR, et al. International Association for the study of lung cancer computed tomography screening workshop 2011 report[J]. J Thorac Oncol, 2012, 7(1): 10-19.
20
Nie X, Li L, Huang J, et al. From focal pulmonary pure ground-glass opacity nodule detected by low-dose computed tomography into invasive lung adenocarcinoma: A growth pattern analysis in the elderly[J]. Thoracic cancer, 2018, 9(11): 1361-1365.
21
Travis WD, Asamura H, Bankier AA, et al. The IASLC lung cancer staging project: proposals for coding T categories for subsolid nodules and assessment of tumor size in part-solid tumors in the forthcoming eighth edition of the TNM classification of lung cancer[J]. J Thorac Oncol, 2016, 11(8): 1204-1223.
22
黄义宝. CT血管征在肺微小结节的诊断和鉴别诊断中的价值分析[J]. 中国继续医学教育,2018, 10(12): 54-56.
23
么 娜,刘 巍. 肺内恶性孤立性小结节的CT征像特征分析与诊断[J]. 临床肺科杂志,2016, 21(8): 1493-1495.
24
张慧芳,杨艳娟. 孤立性肺小结节胸部CT表现与病理对照分析[J]. 宁夏医学杂志,2017, 39(9): 785-788.
25
李 钊,许斌斌,刘思达,等. 孤立性肺结节诊疗进展[J]. 中国医刊,2015, 50(4): 29-34.
26
袁宗旭. 100例胸部小于3 cm结节患者的CT影像学特征[J]. 医疗装备,2018, 31(19): 28-30.
27
苟晓明. 早期肺癌的多层螺旋CT临床诊断价值探讨[J]. 当代医学,2014, 28(30): 13-14.
28
Gould MK, Ananth L, Barnett PG, et al. A clinical model to estimate the pretest probability of lung cancer in patients with solitary pulmonary nodules[J]. Chest, 2007, 131(2): 383-388. doi: 10.1378/chest.06-1261.
29
McWilliams A, Tammemagi MC, Mayo JR, et al. Probability of cancer in pulmonary nodules detected on first screening CT[J]. N Engl J Med, 2013, 369(10): 910-919. doi: 10.1056/NEJMoa1214726
30
李 运,陈克终,隋锡朝,等. 孤立性肺结节良恶性判断数学预测模型的建立[J]. 北京大学学报(医学版), 2011, 43(3): 450-454.
31
Zhang M, Zhuo N, Guo Z, et al. Establishment of a mathematic model for predicting malignancy in solitary pulmonary nodules[J]. J Thorac Dis, 2015, 7(10): 1833-1841.
32
夏晓明,施仁忠,张亚峰. 肺小结节恶性概率预测临床模型构建[J]. 山东医药,2019, 59(7): 72-74.
33
Swensen SJ, Silverstein MD, Ilstrup DM, et al. The probability of malignancy in solitary pulmonary nodules: application to small radiologically indeterminate nodules[J]. Arch Intern Med, 1997, 157(8): 849-855.
[1] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[2] 张锦丽, 席毛毛, 褚志刚, 栾夏刚, 陈诺, 王德运, 谢卫国. 大面积烧伤患者发生早期急性肾损伤的危险因素分析[J]. 中华损伤与修复杂志(电子版), 2024, 19(04): 282-287.
[3] 罗文斌, 韩玮. 胰腺癌患者首次化疗后中重度骨髓抑制的相关危险因素分析及预测模型构建[J]. 中华普通外科学文献(电子版), 2024, 18(05): 357-362.
[4] 李国煜, 丛赟, 祖丽胡马尔·麦麦提艾力, 何铁英. 急性胰腺炎并发门静脉系统血栓形成的危险因素及预测模型构建[J]. 中华普通外科学文献(电子版), 2024, 18(04): 266-270.
[5] 贺斌, 马晋峰. 胃癌脾门淋巴结转移危险因素[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 694-699.
[6] 黄俊龙, 刘柏隆, 罗瑞翔, 李晓阳, 李文双, 柳政, 陈嘉良, 周祥福. 联合盆底彩超数据和临床资料探讨压力性尿失禁的危险因素[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 323-330.
[7] 江杰, 沈城, 潘永昇, 陈新风, 刘振民, 朱华, 郑兵. 尿酸结石的危险因素分析及双能量CT特征研究[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 361-365.
[8] 周劲鸿, 王鉴杰, 谢肖俊. 腹腔镜经腹腹膜前疝修补术后尿潴留发生率及危险因素分析[J]. 中华疝和腹壁外科杂志(电子版), 2024, 18(04): 390-395.
[9] 陈钊, 钟克力, 江志鹏, 傅宇翔, 范宝航, 吴文飞. 前列腺癌术后腹股沟疝的发生率及危险因素分析[J]. 中华疝和腹壁外科杂志(电子版), 2024, 18(04): 396-401.
[10] 冀旭, 朱峰, 冯业晨. 保留器官功能的胰腺切除术后胆道并发症发生危险因素分析[J]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 509-514.
[11] 国超凡, 彭琪博, 郑章强, 于向阳. 低位前切除综合征风险预测及治疗的研究进展[J]. 中华结直肠疾病电子杂志, 2024, 13(04): 335-340.
[12] 刘伟, 高续, 谢玉海, 蒋哲, 刘士成. 基于增强CT影像组学模型在预测急性胰腺炎复发中的应用价值[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 348-354.
[13] 田娜, 韩飞天. 基于CT平扫影像组学模型与系统免疫炎症指数预测急性胰腺炎复发模型的建立[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 355-359.
[14] 董晟, 郎胜坤, 葛新, 孙少君, 薛明宇. 反向休克指数乘以格拉斯哥昏迷评分对老年严重创伤患者发生急性创伤性凝血功能障碍的预测价值[J]. 中华临床医师杂志(电子版), 2024, 18(06): 541-547.
[15] 黄镪, 孙金梅, 韩燕飞, 张拥波. 脑源性与非脑源性疾病所致应激性溃疡相关胃肠道出血的影响因素及临床预后差异:一项回顾性队列研究[J]. 中华脑血管病杂志(电子版), 2024, 18(04): 309-316.
阅读次数
全文


摘要