切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2020, Vol. 13 ›› Issue (06) : 731 -736. doi: 10.3877/cma.j.issn.1674-6902.2020.06.003

论著

结核病患者中靶向调控维生素D受体的microRNA的初步筛选
肖敏1, 杨松2, 陈杨1, 李同心2, 杨仕明1,(), 林辉1,()   
  1. 1. 400037 重庆,陆军(第三)军医大学第二附属医院消化内科重庆市消化内科学临床医学研究中心
    2. 400036 重庆,重庆市公共卫生医疗救治中心
  • 收稿日期:2020-09-10 出版日期:2020-12-25
  • 通信作者: 杨仕明, 林辉
  • 基金资助:
    国家自然科学基金资助项目(81773486)

A study of microRNA Prescreening that targeted and regulated Vitamin D rceptor in tuberculosis patients

Min Xiao1, Song Yang2, Yang Chen1, Tongxin Li2, Shiming Yang1,(), Hui Lin1,()   

  1. 1. Chongqing Center for Clinical Medicine of Digestive Medicine, Department of Gastroenterology, Second Affiliated Hospital, Army Medical University(Third Military Medical University), Chongqing 400037, China
    2. Chongqing Public Health Medical Center, Chongqing 400036, China
  • Received:2020-09-10 Published:2020-12-25
  • Corresponding author: Shiming Yang, Hui Lin
引用本文:

肖敏, 杨松, 陈杨, 李同心, 杨仕明, 林辉. 结核病患者中靶向调控维生素D受体的microRNA的初步筛选[J]. 中华肺部疾病杂志(电子版), 2020, 13(06): 731-736.

Min Xiao, Song Yang, Yang Chen, Tongxin Li, Shiming Yang, Hui Lin. A study of microRNA Prescreening that targeted and regulated Vitamin D rceptor in tuberculosis patients[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2020, 13(06): 731-736.

目的

筛选与结核病相关,且靶向调控维生素D受体(vitamin D receptor, VDR)的microRNA(miRNA),为深入研究维生素D(vitamin D, VitD)辅助抗结核病机制及其临床应用提供一定的参考依据。

方法

选择5例明确诊断肺结核病患者和5例非结核病的志愿者作为研究组和对照组。分别收集临床基线资料以及采集两组外周血单个核细胞(peripheral blood mononuclear cell, PBMC)作为临床样本,提取总RNA后,采用高通量测序技术(high-throughput sequencing),检测两组间的miRNA差异表达情况。

结果

5例肺结核病患者和5例非结核病志愿者临床基线资料经统计学分析得出两组间23项指标的同质性和异质性,其中性别、年龄、吸烟饮酒习惯等两组间无统计学差异;体重指数(BMI)、总胆固醇(TC)、血红蛋白(Hb)白蛋白(ALB)、球蛋白(GLB)及总蛋白(TP)研究组低于对照组,有统计学差异(P<0.05)。高通量测序从研究组和对照组5对样本中共筛选出1 560条miRNAs,得到miRNA在两组中差异表达谱。分层聚类和火山图进一步综合分析发现研究组中最有差异的23条miRNAs(P<0.05),其中15条miRNAs在研究组中表达下(∣LOG2FC∣>1),8条miRNAs表达上调(FC>1)。综合高通量测序结果和生物信息学预测,从差异表达谱中筛选出2条有统计学意义且靶向VDR的miRNAs:hsa-miR-326(P<0.05、FC=1.37)、hsa-miR-654-5p(P<0.05、∣LOG2FC∣=1.06)。

结论

通过临床样本高通量测序分析及生物信息学预测,发现了结核病中的既差异表达又靶向VDR的两条miRNAs,这两条miRNAs可能是肺结核病潜在的诊断标志及新的治疗靶点,为结核病的防治提供了新的策略和方向。

Objective

MicroRNA with significantly differential expression and targeted regulation of Vitamin D receptor(VDR) in Tuberculosis were screened by High-throughput sequencing and bioinformatics methods, whichprovided the further study of Vitamin D anti-tuberculosis mechanism and clinical application.

Method

According to the inclusion and exclusion criteria, 5 patients with definite diagnosis of tuberculosis and 5 non-tuberculosis volunteers were selected as the study group and control group. Peripheral blood mononuclear cells(PBMC) of the two groups were collected as clinical samples. After total RNA was extracted, high-throughput sequencing technology was used to detect the differential expression of miRNA between the two groups.

Result

The clinical baseline data of 5 tuberculosis patients and 5 non-tuberculosis volunteers were collected, and the homogeneity and heterogeneity of 23 items between the two groups were obtained by statistical analysis. It was found that there were no significatly statistical differences in gender, age, smoking and drinking habits between the two groups. Body mass index (BMI), total cholesterol (TC), hemoglobin (Hb) albumin (ALB), globulin (GLB) and total protein (TP) in the study group were lower than those in the control group with significatly statistical differences(P<0.05). A total of 1560 miRNAs were screened out by miRNA sequencing. Through stratified cluster and comprehensive volcanic map analysis, 23 miRNAs with the most significant (P<0.05) differences were found in the case group, among which 15 were down-regulated(∣LOG2FC∣>1) and 8 were up-regulated(FC>1). In short, Combined with bioinformatics predictions, two miRNAs targeted VDR that differentially expressed in tuberculosis patients were screened out: hsa-miR-326(P<0.05、FC=1.37)、hsa-miR-654-5p(P<0.05、∣LOG2FC∣=1.06).

Conclusion

These two differentially expressed miRNAs mentioned abovemay be potential diagnostic markers and new therapeutic targets for tuberculosis.This found provides a new strategy and feasible direction for the prevention and treatment of Tuberculosis.

表1 研究组和对照组临床资料比较
图1 10例样本高通量测序;注:A:为样本中miRNAs表达分为上调、下调和没有显著差异;B:为所有miRNAs差异表达谱FC>2的68条miRNAs在各个样本中的表达情况,以热图表示
表2 肺结核病患者差异表达显著的miRNAs
编 号 miRNA名称 miRNA序列 上调/下调 倍数(FC) 倍数(log2FC) P值(T检验)
1 hsa-miR-1291_L+1R+1 GTGGCCCTGACTGAAGACCAGCAGTT up 3.91 1.97 0.004
2 hsa-miR-27a-3p_R-1 TTCACAGTGGCTAAGTTCCG up 1.37 0.45 0.006
3 hsa-miR-339-3p_R-2 TGAGCGCCTCGACGACAGAGC up 1.52 0.61 0.016
4 hsa-miR-326_R+1 CCTCTGGGCCCTTCCTCCAGT up 1.37 0.45 0.021
5 hsa-mir-6516-p3 TGTATGATACTGCAAACAGGA up 3.13 1.65 0.034
6 hsa-miR-301a-3p CAGTGCAATAGTATTGTCAAAGC up 6.26 2.65 0.037
7 hsa-miR-30b-5p TGTAAACATCCTACACTCAGCT up 1.46 0.55 0.046
8 hsa-miR-30d-3p CTTTCAGTCAGATGTTTGCTGC up 2.9 1.54 0.047
9 hsa-miR-432-5p TCTTGGAGTAGGTCATTGGGTGG down 0.4 -1.34 0.000
10 hsa-miR-134-5p TGTGACTGGTTGACCAGAGGGG down 0.46 -1.11 0.001
11 hsa-miR-485-5p_R+1 AGAGGCTGGCCGTGATGAATTCG down 0.5 -1.01 0.008
12 hsa-miR-4667-3p_R+1 TCCCTCCTTCTGTCCCCACAGT down 0.27 -1.91 0.011
13 hsa-miR-127-3p TCGGATCCGTCTGAGCTTGGCT down 0.43 -1.21 0.012
14 hsa-miR-433-3p ATCATGATGGGCTCCTCGGTGT down 0.44 -1.18 0.012
15 hsa-miR-493-5p TTGTACATGGTAGGCTTTCATT down 0.47 -1.08 0.012
16 hsa-miR-382-5p GAAGTTGTTCGTGGTGGATTCG down 0.47 -1.1 0.014
17 hsa-miR-323a-3p_L+1 GCACATTACACGGTCGACCTCT down 0.48 -1.07 0.018
18 hsa-miR-431-5p_R-1 TGTCTTGCAGGCCGTCATGC down 0.4 -1.33 0.018
19 hsa-miR-654-5p TATGTCTGCTGACCATCACC down 0.48 -1.06 0.020
20 hsa-miR-941 CACCCGGCTGTGTGCACATGTGC down 0.29 -1.81 0.021
21 hsa-miR-409-3p GAATGTTGCTCGGTGAACCCCT down 0.49 -1.03 0.022
22 hsa-miR-758-3p_R-1 TTTGTGACCTGGTCCACTAAC down 0.5 -1.01 0.032
23 hsa-miR-550a-3-5p_R+1 AGTGCCTGAGGGAGTAAGAGA down 0.23 -2.11 0.048
图2 miRNAs功能及相似性分析;注:A:经过对比,33条miRNAs中,有显著相关性的miRNA有22条;B:22条miRNAs与细胞重编程、细胞分化等功能有密切联系;C:21条miRNAs参与的相对应生物学过程
表3 可能靶向VDR的miRNAs初步筛选结果
1
Wallis Robert S, Maeurer Markus, Mwaba Peter, et al. Tuberculosis-advances in development of new drugs, treatment regimens, host-directed therapies, and biomarkers[J]. Lancet Infect Dis, 2016, 16(4): e34-46.
2
White JH. Vitamin D metabolism and signaling in the immune system [J]. Reviews Endocrine Metabolic Disorders, 2012, 13(1): 21-29.
3
Wingfield Tom, Schumacher Samuel G, Sandhu Gurjinder, et al. The seasonality of tuberculosis, sunlight, vitamin D, and household crowding[J]. J Infect Dis, 2014, 210(5): 774-783.
4
Panda Sudhasini, Tiwari Ambrish, Luthra Kalpana, et al. Status of vitamin D and the associated host factors in pulmonary tuberculosis patients and their household contacts: A cross sectional study[J]. J Steroid Biochem Molecular Biology, 2019, 193: 105419.
5
Wallis RS, Zumla A. Vitamin D as Adjunctive Host-Directed Therapy in Tuberculosis: A Systematic Review[J]. Open Forum Infectious Diseases, 2016, 3(3): 151.
6
Campbell MJ, Trump DL. Vitamin D Receptor Signaling and Cancer[J]. Endocrinology and Metabolism Clinics of North America, 2017, 46(4): 1009-1038.
7
Yang T, B Ge. miRNAs in immune responses to Mycobacterium tuberculosis infection[J]. Cancer Letters, 2018, 431: 22-30.
8
Jadideslam G, Ansarin K, Sakhinia E, et al. The MicroRNA-326: Autoimmune diseases, diagnostic biomarker, and therapeutic target[J]. J Cell Physiol, 2018, 233(12): 9209-9222.
9
Singh, P.K., et al., VDR regulation of microRNA differs across prostate cell models suggesting extremely flexible control of transcription[J]. Epigenetics, 2015, 10(1): 40-49.
10
Xing He, Yue Sun, Nanhang Lei, et al. MicroRNA-351 promotes schistosomiasis-induced hepatic fibrosis by targeting the vitamin D receptor[J]. Proceedings of the National Academy of Sciences, 2018, 115(1): 180-185.
11
Kong Fanjing, Chenxiang Du, Wang Yu. MicroRNA-9 affects isolated ovarian granulosa cells proliferation and apoptosis via targeting vitamin D receptor[J]. Molecular and Cellular Endocrinology, 2019, 486(15): 18-24.
12
Padi Sathish KR, Zhang Qunshu, Rustum Youcef M, et al. MicroRNA- 627 Mediates the Epigenetic Mechanisms of Vitamin D to Suppress Proliferation of Human Colorectal Cancer Cells and Growth of Xenograft Tumors in Mice[J]. Gastroenterology, 2013, 145(2): 437-446.
13
Wang Min, Kong Weimin, Biyu He, et al. Vitamin D and the promoter methylation of its metabolic pathway genes in association with the risk and prognosis of tuberculosis[J]. Clinical Epigenetics, 2018, 10(1): 118.
14
Ouimet Mireille, Koster Stefan, Sakowski Erik, et al. Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism[J]. Nat Immunol, 2016, 17(6): 677-86.
15
Feng Liu, Chen Jianxia, Wang Peng, et al. MicroRNA-27a controls the intracellular survival of Mycobacterium tuberculosis by regulating calcium-associated autophagy[J]. Nat Commun, 2018, 9(1): 4295.
16
刘小利,刘 涛. 新版肺结核诊断标准解读[J]. 中华灾害救援医学,2018, 6(4): 181-185.
17
Collaborative Group for the Meta-Analysis of Individual Patient Data in MDR-TB treatment-2017; Ahmad Nafees, Ahuja Shama D, et al. Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: an individual patient data meta-analysis[J]. Lancet, 2018, 392(10150): 821-834.
18
任成山,林 辉,杨仕明. 结核病的流行特征与耐多药的窘迫及其策略[J/CD]. 中华肺部疾病杂志(电子版), 2019, 12(3): 269-274.
19
Baek Seung Don, Jeung Soomin, Kang Jae-Young. Nutritional Adequacy and Latent Tuberculosis Infection in End-Stage Renal Disease Patients[J]. Nutrients, 2019, 11(10): 2299.
20
Sinha Pranay, Hochberg Natasha S. Crystal ball: the yesterday and tomorrow of tuberculosis[J]. Environmental Microbiology Reports, 2019, 11(1): 41-44.
21
Ralph AP, Lucas RM, Norval M. Vitamin D and solar ultraviolet radiation in the risk and treatment of tuberculosis[J]. Lancet Infect Dis, 2013, 13(1): 77-88.
[1] 伍梦妮, 徐志华, 陈彦. DTNBP1基因在三阴性乳腺癌中的作用及其预后价值[J]. 中华乳腺病杂志(电子版), 2024, 18(03): 158-168.
[2] 张学. 说基因话疾病[J]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 366-.
[3] 李怡泉, 谢宇斌, 胡宏, 张燕茹, 陈图锋. 基于生物信息学分析HDAC8在结肠癌中的临床意义及其与免疫浸润的关系[J]. 中华普通外科学文献(电子版), 2024, 18(04): 275-281.
[4] 张秋子, 胡利梅, 陈雅茹, 左丽, 任卫东. 维生素D水平与亚急性甲状腺炎预后的相关性研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 217-219.
[5] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[6] 白若靖, 郭军. 维生素D对肺部疾病临床意义的研究进展[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 659-662.
[7] 罗懿, 王洪武. 宏基因组高通量测序在肺部感染中的应用[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 320-323.
[8] 吴沛玲, 娄月妍, 张洪艳, 陈东方, 刘雪青, 赵丽芳, 薛姗, 蒋捍东. 线粒体相关基因在特发性肺纤维化中的分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 178-184.
[9] 李苑莹, 龚金如, 陈晓璇, 孙瑞琳. 成人肺炎支原体肺炎临床特征分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 223-228.
[10] 邢磊, 史镜琪, 李荣艳, 刘静, 刘建伟, 叶玲, 张明华, 范皎. 基于转录组测序分析人大细胞肺癌NCI-H460细胞对类泛素化抑制剂MLN4924的潜在耐药机制[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(01): 1-10.
[11] 杨智義, 赵成俊, 胡欣芫, 潘佰猛, 张秋雨, 张挽乾, 曹芮, 张灵强. 外周血cfDNA液体活检技术在肝棘球蚴病诊治中的应用进展[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 389-393.
[12] 陈显育, 曾谣, 莫钊鸿, 翟航, 张广权, 钟造茂, 陈署贤. 生物信息学分析CETP基因在肝癌中表达及其对预后和免疫的影响[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 214-219.
[13] 贾红艳, 王丹, 张冉冉, 马茜, 焦永红. 基于全外显子组测序探寻Möbius综合征发病机制的遗传学研究[J]. 中华眼科医学杂志(电子版), 2024, 14(03): 146-154.
[14] 房桂彬, 肖进, 傅光涛, 郑秋坚. 老年髋部骨折患者术后1年行走能力的影响因素分析[J]. 中华老年骨科与康复电子杂志, 2024, 10(05): 273-280.
[15] 曹磊, 邵轶普, 张志中, 王晨潮, 孙开文, 董阳, 闫东明, 李红伟, 杨波. 基于遗传基因的烟雾病与烟雾综合征生物信息学分析机制研究[J]. 中华脑血管病杂志(电子版), 2024, 18(04): 350-356.
阅读次数
全文


摘要