1 |
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries?[J]. CA Cancer J Clin, 2021,71(3): 209-249.
|
2 |
Allemani C, Matsuda T, Di Carlo V, et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries[J]. Lancet, 2018, 391(10125): 1023-1075.
|
3 |
陈 文,单 奔,陈小宇. 高分辨率CT下肺磨玻璃结节影像学特征以及术后病理比较[J/CD]. 中华肺部疾病杂志(电子版), 2021, 14(3): 288-292.
|
4 |
周清华,范亚光,王 颖,等. 中国肺部结节分类、诊断与治疗指南(2016年版)[J]. 中国肺癌杂志,2016, 19(12): 793-798.
|
5 |
杨 丽,钱桂生. 肺结节临床精准诊断的新理念[J/CD]. 中华肺部疾病杂志(电子版), 2022, 15(1): 1-5.
|
6 |
李 丽,刘 周,杨 倩,等. 肺微小结节的CT影像学表现及诊断价值[J]. 中国癌症防治杂志,2020, 12(1): 90-95.
|
7 |
范卫杰,张 冬. 影像组学及深度学习在肺结节良恶性鉴别诊断中的新理念[J/CD]. 中华肺部疾病杂志(电子版), 2021, 14(5): 549-553.
|
8 |
Duan XQ, Wang XL, Zhang LF, et al. Establishment and validation of a prediction model for the probability of malignancy in solid solitary pulmonary nodules in northwest China.[J]. J Surg Oncol, 2021, 123(4): 1134-1143.
|
9 |
Weir-McCall JR, Joyce S, Clegg A, et al. Dynamic contrast-enhanced computed tomography for the diagnosis of solitary pulmonary nodules: a systematic review and meta-analysis.[J]. Eur Radiol, 2020, 30(6): 3310-3323.
|
10 |
Siegel MJ, Kaza RK, Bolus DN, et al. White paper of the society of computed body tomography and magnetic resonance on dual-energy CT, Part 1: Technology and Terminology.[J]. J Comput Assist Tomogr, 2016, 40(6): 841-845.
|
11 |
Foley WD, Shuman WP, Siegel MJ, et al. White paper of the society of computed body tomography and magnetic resonance on dual-energy CT, Part 2: Radiation Dose and Iodine Sensitivity.[J]. J Comput Assist Tomogr, 2016, 40(6): 846-850.
|
12 |
De Cecco CN, Schoepf UJ, Steinbach L, et al. White paper of the society of computed body tomography and magnetic resonance on dual-energy CT, Part 3: Vascular, Cardiac, Pulmonary, and Musculoskeletal Applications.[J]. J Comput Assist Tomogr, 2017, 41(1): 1-7.
|
13 |
史志勇. 能谱CT定量分析在非小细胞肺癌术前诊断中的临床价值[J]. 中国CT和MRI杂志,2020, 18(9): 76-78, 177.
|
14 |
Detterbeck FC, Boffa DJ, Kim AW, et al. The Eighth edition lung cancer stage classification[J]. Chest, 2017, 151(1): 193-203.
|
15 |
Saji H, Okada M, Tsuboi M, et al. Segmentectomy versus lobectomy in small-sized peripheral non-small-cell lung cancer (JCOG0802/WJOG4607L): a multicentre, open-label, phase 3, randomised, controlled, non-inferiority trial[J]. Lancet, 2022, 399(10335): 1607-1617.
|
16 |
中华医学会肿瘤学分会,中华医学会杂志社. 中华医学会肺癌临床诊疗指南(2022版)[J]. 中华医学杂志,2022, 102(23): 1706-1740.
|
17 |
朱 颖,许攀峰,姚亚克,等. 恶性孤立性肺微小结节的独立预测因子及预测模型[J]. 中国肿瘤临床,2018, 45(10): 497-502.
|
18 |
Nemesure B, Clouston S, Albano D, et al. Will that pulmonary nodule become cancerous? A risk prediction model for incident lung cancer[J]. Cancer Prev Res (Phila), 2019, 12(7): 463-470.
|
19 |
易芹芹,周 宙,黄国鑫. 基于CT表现的孤立性肺结节良恶性预测模型的研究[J]. CT理论与应用研究,2019, 28(6): 677-683.
|
20 |
梁海胜,纪 律. 多排螺旋CT灌注成像联合图像三维重建技术定性诊断孤立性肺结节的价值[J]. 广西医学,2020, 42(5): 543-547.
|
21 |
王素雅,高剑波,张 芮,等. CT能谱成像对孤立性肺结节的诊断价值[J]. 中华医学杂志,2016, 96(13): 1040-1043.
|
22 |
Lin JZ, Zhang L, Zhang CY, et al. Application of gemstone spectral computed tomography imaging in the characterization of solitary pulmonary nodules: Preliminary result.[J]. J Comput Assist Tomogr, 2016, 40(6): 907-911.
|
23 |
Zhao J, Chai Y, Zhou J, et al. Energy spectrum computed tomography improves the differentiation between benign and malignant solitary pulmonary nodules.[J]. Clin Invest Med, 2019, 42(3): E40-E46.
|
24 |
Zegadło A, Zabicka M, Kania-Pudło M, et al. Assessment of solitary pulmonary nodules based on virtual monochrome images and iodine-dependent images using a single-source dual-energy CT with fast kVp switching.[J]. J Clin Med, 2020, 9(8): 2514.
|
25 |
Lennartz S, Mager A, Große Hokamp N, et al. Texture analysis of iodine maps and conventional images for k-nearest neighbor classification of benign and metastatic lung nodules[J]. Cancer Imaging, 2021, 21(1): 17.
|
26 |
Chen ML, Li XT, Wei YY, et al. Can spectral computed tomography imaging improve the differentiation between malignant and benign pulmonary lesions manifesting as solitary pure ground glass, mixed ground glass, and solid nodules?[J]. Thorac Cancer, 2019, 10(2): 234-242.
|
27 |
Zhang Y, Cheng J, Hua X, et al. Can spectral CT imaging improve the differentiation between malignant and benign solitary pulmonary nodules?[J]. PLoS One, 2016, 11(2): e0147537.
|
28 |
李梅芳,袁才兴,陈少聪,等. 探讨双能量CT在肺小结节中的研究价值[J]. 影像研究与医学应用,2019, 3(10): 46-48.
|
29 |
Wen Q, Yue Y, Shang J, et al. The application of dual-layer spectral detector computed tomography in solitary pulmonary nodule identification.[J]. Quant Imaging Med Surg, 2021, 11(2): 521-532.
|
30 |
Lin LY, Zhang Y, Suo ST, et al. Correlation between dual-energy spectral CT imaging parameters and pathological grades of non-small cell lung cancer[J]. Clin Radiol, 2018, 73(4): 412.e1-412.e7.
|
31 |
Xiao H, Liu Y, Tan H, et al. A pilot study using low-dose Spectral CT and ASIR (Adaptive Statistical Iterative Reconstruction) algorithm to diagnose solitary pulmonary nodules[J]. BMC Med Imaging, 2015, 15: 54.
|
32 |
Mu R, Meng Z, Zhang X, et al. Parameters of Dual-layer Spectral Detector CT Could be Used to Differentiate Non-Small Cell Lung Cancer from Small Cell Lung Cancer[J]. Curr Med Imaging, 2022, 18(10): 1070-1078.
|
33 |
Gao L, Lu X, Wen Q, et al. Added value of spectral parameters for the assessment of lymph node metastasis of lung cancer with dual-layer spectral detector computed tomography[J]. Quant Imaging Med Surg, 2021, 11(6): 2622-2633.
|
34 |
Hou WS, Wu HW, Yin Y, et al. Differentiation of lung cancers from inflammatory masses with dual-energy spectral CT imaging.[J]. Acad Radiol, 2015, 22(3): 337-344.
|