切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2022, Vol. 15 ›› Issue (05) : 630 -636. doi: 10.3877/cma.j.issn.1674-6902.2022.05.004

论著

采用双能CT构建肺结节良恶性预测模型及碘图定量参数的临床分析
张厚丽1, 罗虎1, 王康1, 陈俞坊1, 衣杏林1, 周向东1,()   
  1. 1. 400038 重庆,陆军(第三)军医大学第一附属医院呼吸与危重症医学科
  • 收稿日期:2022-04-05 出版日期:2022-10-25
  • 通信作者: 周向东
  • 基金资助:
    重庆市科卫联合医学科研项目(2020FYYX012); 重庆市卫生适宜技术推广项目(2020jstg016)

Construction of a predictive model of benign and malignant pulmonary nodules Using dual-energy CT and the clinical value of quantitative parameters of iodine map

Houli Zhang1, Hu Luo1, Kang Wang1, Yufang Chen1, Xinglin Yi1, Xiangdong Zhou1,()   

  1. 1. Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
  • Received:2022-04-05 Published:2022-10-25
  • Corresponding author: Xiangdong Zhou
引用本文:

张厚丽, 罗虎, 王康, 陈俞坊, 衣杏林, 周向东. 采用双能CT构建肺结节良恶性预测模型及碘图定量参数的临床分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(05): 630-636.

Houli Zhang, Hu Luo, Kang Wang, Yufang Chen, Xinglin Yi, Xiangdong Zhou. Construction of a predictive model of benign and malignant pulmonary nodules Using dual-energy CT and the clinical value of quantitative parameters of iodine map[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2022, 15(05): 630-636.

目的

联合临床特征、双能量CT影像学特征及定量参数分析肺结节良恶性鉴别的危险因素,构建预测模型,分析碘图定量参数对肺结节定性诊断中的意义。

方法

选择2015年1月至2021年6月我院收治的经双能量CT(DECT)检查≤3 cm的肺结节844例为对象,以病理结果为金标准分为良性组181例,恶性组673例,采用SPSS 23.0分析获取定性诊断的危险预测因子。Logistic回归多因素分析评估组间关系;ROC曲线评估模型的诊断价值。

结果

844例有872个符合条件的肺结节,良性组182个肺结节、恶性组690个结节,单因素分析提示年龄、CT值、RECIST直径、碘浓度、碘比值、性别、吸烟史、结节数、密度、空洞征、含气支气管征在良恶性结节鉴别中有统计学差异(P<0.05),碘浓度≥1.05 mg/ml(AUC=0.632,灵敏度=77.4%、特异度=45.1%)、碘比值≥13.9%(AUC=0.604,灵敏度=89.9%、特异度=29.1%)时肺结节倾向于恶性。Logistic回归分析显示RECIST直径、碘浓度、密度、空泡征、含气支气管征被纳入预测模型,ROC曲线提示AUC=0.808(Cut-off值=0.49,灵敏度=81.4%、特异度=67.6%),去除碘图定量参数后重新构建的预测模型ROC曲线(AUC=0.802,P=0.000,Cut-off值=0.481,灵敏度=79.4%、特异度=68.7%)。

结论

年龄、CT值、RECIST直径、碘浓度、碘比值、性别、吸烟史、结节数、密度、空洞征、含气支气管征为肺结节定性诊断的危险预测因素,碘浓度≥1.05 mg/ml、碘比值≥13.9%时肺结节倾向于恶性;构建预测模型具有诊断意义,碘浓度在整体模型中贡献较小。

Objective

Combined with clinical features, dual-energy CT imaging features and related quantitative parameters to analyze the independent risk factors for the differential diagnosis of benign and malignant pulmonary nodules and to construct a clinical predictive model, and analyze the value of quantitative parameters of iodine map in the qualitative diagnosis of pulmonary nodules.

Method

All of 844 cases of the clinical data, imaging data and pathological results of ≤3 cm pulmonary nodules who were examined by dual energy CT (Dual-energyCT, DECT) from January 2015 to June 2021 were collected retrospectively, according to the pathological results, the patients were divided into benign group 181 cases and malignant group 673 cases. The data were statistically analyzed by SPSS 23.0, and the independent risk predictors of qualitative diagnosis were obtained by univariate analysis. The t test is used for the measurement data in accordance with the normal distribution, otherwise the nonparametric test is used, and the counting data are tested by χ2 test. The independent risk factors are substituted into Logistic regression for multi-factor analysis, and the correlation analysis is used to evaluate the relationship among the indicators; the diagnostic value of the model was evaluated by ROC curve.

Results

A total of 872 qualified pulmonary nodules were collected from 844 patients, including 182 pulmonary nodules in benign group and 690 nodules in malignant group. Univariate analysis showed that age, sex, smoking history, CT value, RECIST diameter, nodule number, density, cavity sign and gaseous bronchus sign, iodine concentration, iodine ratio were significantly different in the differential diagnosis of benign and malignant nodules (P<0.05), pulmonary nodules tend to be malignant when the iodine concentration ≥1.05 mg/ml (AUC=0.632, sensitivity=77.4%, specificity=45.1%) and the iodine ratio ≥13.9% (AUC=0.604, sensitivity=89.9%, specificity=29.1%). The independent risk factors were substituted into the binary Logistic regression analysis, which shows that RECIST diameter, iodine concentration, density, vacuole sign and gaseous bronchus sign were included in the prediction model, the ROC curve of the model indicated AUC=0.808 (Cut-off value=0.49, sensitivity=81.4%, specificity=67.6%) (P=0.000), and the ROC curve of the reconstructed prediction model (AUC=0.802, P=0.000, Cut-off value=0.481, Sensitivity=79.4%, specificity=68.7%) after removing the quantitative parameters of iodine map.

Conclusion

Age, sex, smoking history, CT value, RECIST diameter, nodule number, density, cavity sign and pneumobronchial sign, iodine concentration, iodine ratio were independent risk predictors for qualitative diagnosis of pulmonary nodules, and pulmonary nodules were more likely to be malignant when iodine concentration≥1.05 mg/ml and iodine ratio >13.9%. The clinical prediction model has good diagnostic value, but the contribution of iodine concentration to the whole model is small.

表1 结节病理类型及确诊方法与结节密度计数(个)
表2 ≤3 cm肺结节的单因素分析
表3 碘图定量参数及预测模型的诊断价值(%)
图1 ≤3 cm肺结节的箱式图;注:A:碘浓度;B:碘比值
图2 碘图定量参数及预测模型的ROC曲线
表4 ≤3 cm肺结节的多因素分析
1
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries?[J]. CA Cancer J Clin, 202171(3): 209-249.
2
Allemani C, Matsuda T, Di Carlo V, et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries[J]. Lancet, 2018, 391(10125): 1023-1075.
3
陈 文,单 奔,陈小宇. 高分辨率CT下肺磨玻璃结节影像学特征以及术后病理比较[J/CD]. 中华肺部疾病杂志(电子版), 2021, 14(3): 288-292.
4
周清华,范亚光,王 颖,等. 中国肺部结节分类、诊断与治疗指南(2016年版)[J]. 中国肺癌杂志2016, 19(12): 793-798.
5
杨 丽,钱桂生. 肺结节临床精准诊断的新理念[J/CD]. 中华肺部疾病杂志(电子版), 2022, 15(1): 1-5.
6
李 丽,刘 周,杨 倩,等. 肺微小结节的CT影像学表现及诊断价值[J]. 中国癌症防治杂志2020, 12(1): 90-95.
7
范卫杰,张 冬. 影像组学及深度学习在肺结节良恶性鉴别诊断中的新理念[J/CD]. 中华肺部疾病杂志(电子版), 2021, 14(5): 549-553.
8
Duan XQ, Wang XL, Zhang LF, et al. Establishment and validation of a prediction model for the probability of malignancy in solid solitary pulmonary nodules in northwest China.[J]. J Surg Oncol, 2021, 123(4): 1134-1143.
9
Weir-McCall JR, Joyce S, Clegg A, et al. Dynamic contrast-enhanced computed tomography for the diagnosis of solitary pulmonary nodules: a systematic review and meta-analysis.[J]. Eur Radiol, 2020, 30(6): 3310-3323.
10
Siegel MJ, Kaza RK, Bolus DN, et al. White paper of the society of computed body tomography and magnetic resonance on dual-energy CT, Part 1: Technology and Terminology.[J]. J Comput Assist Tomogr, 2016, 40(6): 841-845.
11
Foley WD, Shuman WP, Siegel MJ, et al. White paper of the society of computed body tomography and magnetic resonance on dual-energy CT, Part 2: Radiation Dose and Iodine Sensitivity.[J]. J Comput Assist Tomogr, 2016, 40(6): 846-850.
12
De Cecco CN, Schoepf UJ, Steinbach L, et al. White paper of the society of computed body tomography and magnetic resonance on dual-energy CT, Part 3: Vascular, Cardiac, Pulmonary, and Musculoskeletal Applications.[J]. J Comput Assist Tomogr, 2017, 41(1): 1-7.
13
史志勇. 能谱CT定量分析在非小细胞肺癌术前诊断中的临床价值[J]. 中国CT和MRI杂志2020, 18(9): 76-78, 177.
14
Detterbeck FC, Boffa DJ, Kim AW, et al. The Eighth edition lung cancer stage classification[J]. Chest, 2017, 151(1): 193-203.
15
Saji H, Okada M, Tsuboi M, et al. Segmentectomy versus lobectomy in small-sized peripheral non-small-cell lung cancer (JCOG0802/WJOG4607L): a multicentre, open-label, phase 3, randomised, controlled, non-inferiority trial[J]. Lancet, 2022, 399(10335): 1607-1617.
16
中华医学会肿瘤学分会,中华医学会杂志社. 中华医学会肺癌临床诊疗指南(2022版)[J]. 中华医学杂志2022, 102(23): 1706-1740.
17
朱 颖,许攀峰,姚亚克,等. 恶性孤立性肺微小结节的独立预测因子及预测模型[J]. 中国肿瘤临床2018, 45(10): 497-502.
18
Nemesure B, Clouston S, Albano D, et al. Will that pulmonary nodule become cancerous? A risk prediction model for incident lung cancer[J]. Cancer Prev Res (Phila), 2019, 12(7): 463-470.
19
易芹芹,周 宙,黄国鑫. 基于CT表现的孤立性肺结节良恶性预测模型的研究[J]. CT理论与应用研究2019, 28(6): 677-683.
20
梁海胜,纪 律. 多排螺旋CT灌注成像联合图像三维重建技术定性诊断孤立性肺结节的价值[J]. 广西医学2020, 42(5): 543-547.
21
王素雅,高剑波,张 芮,等. CT能谱成像对孤立性肺结节的诊断价值[J]. 中华医学杂志2016, 96(13): 1040-1043.
22
Lin JZ, Zhang L, Zhang CY, et al. Application of gemstone spectral computed tomography imaging in the characterization of solitary pulmonary nodules: Preliminary result.[J]. J Comput Assist Tomogr, 2016, 40(6): 907-911.
23
Zhao J, Chai Y, Zhou J, et al. Energy spectrum computed tomography improves the differentiation between benign and malignant solitary pulmonary nodules.[J]. Clin Invest Med, 2019, 42(3): E40-E46.
24
Zegadło A, Zabicka M, Kania-Pudło M, et al. Assessment of solitary pulmonary nodules based on virtual monochrome images and iodine-dependent images using a single-source dual-energy CT with fast kVp switching.[J]. J Clin Med, 2020, 9(8): 2514.
25
Lennartz S, Mager A, Große Hokamp N, et al. Texture analysis of iodine maps and conventional images for k-nearest neighbor classification of benign and metastatic lung nodules[J]. Cancer Imaging, 2021, 21(1): 17.
26
Chen ML, Li XT, Wei YY, et al. Can spectral computed tomography imaging improve the differentiation between malignant and benign pulmonary lesions manifesting as solitary pure ground glass, mixed ground glass, and solid nodules?[J]. Thorac Cancer, 2019, 10(2): 234-242.
27
Zhang Y, Cheng J, Hua X, et al. Can spectral CT imaging improve the differentiation between malignant and benign solitary pulmonary nodules?[J]. PLoS One, 2016, 11(2): e0147537.
28
李梅芳,袁才兴,陈少聪,等. 探讨双能量CT在肺小结节中的研究价值[J]. 影像研究与医学应用2019, 3(10): 46-48.
29
Wen Q, Yue Y, Shang J, et al. The application of dual-layer spectral detector computed tomography in solitary pulmonary nodule identification.[J]. Quant Imaging Med Surg, 2021, 11(2): 521-532.
30
Lin LY, Zhang Y, Suo ST, et al. Correlation between dual-energy spectral CT imaging parameters and pathological grades of non-small cell lung cancer[J]. Clin Radiol, 2018, 73(4): 412.e1-412.e7.
31
Xiao H, Liu Y, Tan H, et al. A pilot study using low-dose Spectral CT and ASIR (Adaptive Statistical Iterative Reconstruction) algorithm to diagnose solitary pulmonary nodules[J]. BMC Med Imaging, 2015, 15: 54.
32
Mu R, Meng Z, Zhang X, et al. Parameters of Dual-layer Spectral Detector CT Could be Used to Differentiate Non-Small Cell Lung Cancer from Small Cell Lung Cancer[J]. Curr Med Imaging, 2022, 18(10): 1070-1078.
33
Gao L, Lu X, Wen Q, et al. Added value of spectral parameters for the assessment of lymph node metastasis of lung cancer with dual-layer spectral detector computed tomography[J]. Quant Imaging Med Surg, 2021, 11(6): 2622-2633.
34
Hou WS, Wu HW, Yin Y, et al. Differentiation of lung cancers from inflammatory masses with dual-energy spectral CT imaging.[J]. Acad Radiol, 2015, 22(3): 337-344.
[1] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[2] 李国煜, 丛赟, 祖丽胡马尔·麦麦提艾力, 何铁英. 急性胰腺炎并发门静脉系统血栓形成的危险因素及预测模型构建[J]. 中华普通外科学文献(电子版), 2024, 18(04): 266-270.
[3] 张阳, 纽燕娜, 常丽蓉, 唐国华, 赵萍. ERAS理念下肝棘球蚴病术后并发症风险预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 287-290.
[4] 丁关棣, 黄云, 曹震, 刘刚. 胃癌根治术后感染性并发症预测:基于真实世界数据的Nomogram模型开发与验证[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 261-266.
[5] 江杰, 沈城, 潘永昇, 陈新风, 刘振民, 朱华, 郑兵. 尿酸结石的危险因素分析及双能量CT特征研究[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 361-365.
[6] 刘锦程, 王斌, 张雯, 张明周, 刘禹, 叶东樊, 黄赞胜, 邱凌霄, 卿斌, 王创业, 王南博, 王苹, 郭宇航, 周培花, 程秋霞, 徐智. 肺泡灌洗液RASSF1A及SHOX2甲基化联合径向超声特征对肺结节性质鉴别诊断的意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 505-511.
[7] 孙志红, 庞红艳, 王睿. 呼出气体中VOCs联合CT征象诊断非实性肺结节的临床意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 442-445.
[8] 杨竞, 周光文. 肝硬化门静脉高压症治疗后再出血危险因素分析及预测模型构建[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 296-301.
[9] 国超凡, 彭琪博, 郑章强, 于向阳. 低位前切除综合征风险预测及治疗的研究进展[J]. 中华结直肠疾病电子杂志, 2024, 13(04): 335-340.
[10] 王绅, 王如海, 李春, 杨震, 孙菲琳. 中重型颅脑创伤患者住院时间延长的危险因素分析及预测模型构建[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(03): 146-153.
[11] 刘伟, 高续, 谢玉海, 蒋哲, 刘士成. 基于增强CT影像组学模型在预测急性胰腺炎复发中的应用价值[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 348-354.
[12] 田娜, 韩飞天. 基于CT平扫影像组学模型与系统免疫炎症指数预测急性胰腺炎复发模型的建立[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 355-359.
[13] 赵倩, 刘文超, 李玺琳, 章邱东. 老年急性脑梗死诱发胃肠损伤的风险因素分析及模型构建[J]. 中华消化病与影像杂志(电子版), 2024, 14(03): 213-217.
[14] 董晟, 郎胜坤, 葛新, 孙少君, 薛明宇. 反向休克指数乘以格拉斯哥昏迷评分对老年严重创伤患者发生急性创伤性凝血功能障碍的预测价值[J]. 中华临床医师杂志(电子版), 2024, 18(06): 541-547.
[15] 王宇, 张泽锴, 吴明胜, 王高祥, 孙效辉, 王君, 徐美青, 李田, 徐世斌, 解明然. 术后病理诊断为良性肺结节323例患者临床特征分析[J]. 中华胸部外科电子杂志, 2024, 11(03): 167-174.
阅读次数
全文


摘要