切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2024, Vol. 17 ›› Issue (02) : 178 -184. doi: 10.3877/cma.j.issn.1674-6902.2024.02.002

论著

线粒体相关基因在特发性肺纤维化中的分析
吴沛玲1, 娄月妍1, 张洪艳1, 陈东方1, 刘雪青1, 赵丽芳1, 薛姗1, 蒋捍东1,()   
  1. 1. 200120 上海,上海交通大学医学院附属仁济医院呼吸与危重症医学科
  • 收稿日期:2023-09-21 出版日期:2024-04-25
  • 通信作者: 蒋捍东
  • 基金资助:
    国家自然科学基金项目资助(82173828)

Analysis of mitochondrial related genes in idiopathic pulmonary fibrosis

Peiling Wu1, Yueyan Lou1, Hongyan Zhang1, Dongfang Chen1, Shan Xue1, Lifang Zhao1, Xueqing Liu1, Handong Jiang1,()   

  1. 1. Department of Respiratory and Critical Care Medicine, Renji Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
  • Received:2023-09-21 Published:2024-04-25
  • Corresponding author: Handong Jiang
引用本文:

吴沛玲, 娄月妍, 张洪艳, 陈东方, 刘雪青, 赵丽芳, 薛姗, 蒋捍东. 线粒体相关基因在特发性肺纤维化中的分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 178-184.

Peiling Wu, Yueyan Lou, Hongyan Zhang, Dongfang Chen, Shan Xue, Lifang Zhao, Xueqing Liu, Handong Jiang. Analysis of mitochondrial related genes in idiopathic pulmonary fibrosis[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2024, 17(02): 178-184.

目的

通过生物信息学方法和肺纤维化(idiopathic pulmonary fibrosis, IPF)小鼠模型分析与特发性肺纤维化发生发展相关的线粒体相关基因。

方法

从基因表达综合数据库(gene expression omnibu, GEO)中获得IPF样本和正常样本间的差异表达基因;通过MitoCarta3.0数据库和所得差异基因进行匹配,以获取线粒体相关差异基因(mitochondrial-related differential expressed genes, MiRDEGs),并对其进行基因本体论(GeneOntology, GO)分析和京都基因与基因组百科全书(kyoto encyclopedia of genes and genomes, KEGG)功能富集分析;构建MiRDEGs的PPI网络,并使用Cytohubba获得核心MiRDEGs;建立肺纤维化小鼠模型验证鉴定出的核心MiRDEGs。

结果

最终得到26个上调的MiRDEGs和24个下调的MiRDEGs,主要涉及到有氧呼吸,线粒体结构和物质代谢。其中10个MiRDEGs被cytohubba鉴定为核心MiRDEGs。结果表明,在小鼠肺纤维化模型中,FASN,PDK4,ACSL1的表达低于对照组,而ALDH18A1,MTHFD2,ALDH1L2,PC的表达则高于对照组。

结论

IPF中的线粒体相关基因及其对免疫浸润的影响与IPF的发病相关并可能为潜在的治疗靶点。

Objective

Mitochondria-related genes associated with the development of idiopathic pulmonary fibrosis were analyzed by bioinformatics methods and the pulmonary fibrosis mouse model.

Methods

Datasets were acquired from the GEO database. Analysis of differential expressed genes (DEGs) was conducted for each dataset using the GEO2R online tool. Mitochondrial-related differential expressed genes (MiRDEGs) were identified by intersecting MitoCarta3.0 database genes with DEGs. Subsequently, functional enrichment analyses and a Protein-Protein Interaction (PPI) network construction were conducted for MiRDEGs, with hub MiRDEGs identified using CytoHubba. Mouse model of bleomycin-induced pulmonary fibrosis were used to validate hub MiRDEGs.

Results

Our study identified 26 upregulated and 24 downregulated MiRDEGs linked to mitochondrial function, structure and metabolism pathways. Cytohubba identified 10 hub MiRDEGs. Immune infiltration analysis indicated abundant M2 macrophage, M1 macrophage, and M0 macrophage infiltration in IPF samples. Notably, among the hub MiRDEGs, ACSL1 exhibited the most pronounced negative correlation with M2 macrophage infiltration, while PC showed the strongest positive correlation. Animal experiments demonstrated that lower expression of FASN, PDK4, and ACSL1, and higher expression of ALDH18A1, MTHFD2, ALDH1L2, and PC in the pulmonary fibrosis mouse model compared to the control group.

Conclusion

By comprehensively exploring the genes related to mitochondria and emphasizing their impact on immune infiltration in IPF, this investigation provides insights into the molecular mechanisms underlying IPF and potential therapeutic target.

表1 核心MiRDEGs引物序列
图1 IPF样本和正常样本间的差异表达基因。注:A-C: GSE24206,GSE53845,GSE92592差异表达基因火山图;D-F:GSE24206,GSE53845,GSE92592差异表达基因热图
图2 IPF相关MiRDEGs的鉴定及其GO和KEGG分析;MiRDEGs的PPI网络和核心MiRDEGs的鉴定。注:A、B:Venn图显示了mitcarta3.0数据库中线粒体定位基因与GSE24206、GSE53845和GSE92592数据集中的差异基因的交集;C、D:MiRDEGs的GO和KEGG功能富集分析;E:MiRDEGs的PPI网络;F:基于CytoHubba筛选出的十个核心MiRDEGs
图3 肺纤维化小鼠模型构建及核心MiRDEGs在肺纤维化小鼠模型中的验证。注:A、B:对照组和博来霉素组小鼠肺组织的HE和Msson染色;B:核心MiRDEGs在对照组和肺纤维化组小鼠肺组织中的表达水平差异
1
Martinez FJ, Collard HR, Pardo A, et al. Idiopathic pulmonary fibrosis[J]. Nat Rev Dis Primers, 2017, 3: 17074.
2
Jo HE, Randhawa S, Corte TJ, et al. Idiopathic pulmonary fibrosis and the elderly: Diagnosis and management considerations[J]. Drugs Aging, 2016, 33(5): 321-334.
3
Maher TM , Bendstrup E, Dron L, et al. Global incidence and prevalence of idiopathic pulmonary fibrosis[J]. Respir Res, 2021, 22(1): 197.
4
Olson AL, Gifford AH, Inase N, et al.The epidemiology of idiopathic pulmonary fibrosis and interstitial lung diseases at risk of a progressive-fibrosing phenotype[J]. Eur Respir Rev, 2018, 27(150): 180077.
5
Raghu G, Remy-Jardin M, Myers JL, et al. Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline[J]. Am J Respir Crit Care Med, 2018, 198(5): e44-e68.
6
Karimi-Shah BA, Chowdhury BA. Forced vital capacity in idiopathic pulmonary fibrosis-FDA review of pirfenidone and nintedanib[J]. N Engl J Med, 2015, 372(13): 1189-1191.
7
Ley B, Collard HR, King TE Jr . Clinical course and prediction of survival in idiopathic pulmonary fibrosis[J]. Am J Respir Crit Care Med, 2011, 183(4): 431-440.
8
Vyas S, Zaganjor E, Haigis MC. Mitochondria and cancer[J]. Cell, 2016, 166(3): 555-566.
9
Zemirli N, Morel E, Molino D. Mitochondrial dynamics in basal and stressful conditions[J]. Int J Mol Sci, 2018, 19(2): 564.
10
Gonzalez-Gonzalez FJ, Chandel NS, Jain M, et al. Reactive oxygen species as signaling molecules in the development of lung fibrosis[J]. Transl Res, 2017, 190: 61-68.
11
Bueno M, Lai YC, Romero Y, et al. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis[J]. J Clin Invest, 2015, 125(2): 521-538.
12
Kobayashi K, Araya J, Minagawa S, et al. Involvement of PARK2-mediated mitophagy in idiopathic pulmonary fibrosis pathogenesis[J]. J Immunol, 2016, 197(2): 504-516.
13
Yu GY, Tzouvelekis A, Wang R, et al.Thyroid hormone inhibits lung fibrosis in mice by improving epithelial mitochondrial function[J]. Nat Med, 2018, 24(1): 39-49.
14
Gu LL, Casey JLL, Andrabi SA, et al. Mitochondrial calcium uniporter regulates PGC-1alpha expression to mediate metabolic reprogramming in pulmonary fibrosis[J]. Redox Biol, 2019, 26: 101307.
15
Xie N, Tan Z, Banerjee S, et al. Glycolytic Reprogramming in Myofibroblast Differentiation and Lung Fibrosis[J]. Am J Respir Crit Care Med, 2015, 192(12): 1462-1474.
16
Kottmann RM, Kulkarni AA, Smolnycki KA, et al. Lactic acid is elevated in idiopathic pulmonary fibrosis and induces myofibroblast differentiation via pH-dependent activation of transforming growth factor-beta[J]. Am J Respir Crit Care Med, 2012, 186(8): 740-751.
17
Chu SG, Villalba JA, Liang XL, et al. Palmitic acid-rich high-fat diet exacerbates experimental pulmonary fibrosis by modulating endoplasmic reticulum stress[J]. Am J Respir Cell Mol Biol, 2019, 61(6): 737-746.
18
Kim HS, Yoo HJ, Lee KM, et al. Stearic acid attenuates profibrotic signalling in idiopathic pulmonary fibrosis[J]. Respirology, 2021, 26(3): 255-263.
19
Wang ZW, Chen L, Huang Y, et al. Pharmaceutical targeting of succinate dehydrogenase in fibroblasts controls bleomycin-induced lung fibrosis[J]. Redox Biol, 2021, 46: 102082.
20
Yan F, Wen ZS, Wang Rui, et al. Identification of the lipid biomarkers from plasma in idiopathic pulmonary fibrosis by Lipidomics[J]. BMC Pulm Med, 2017, 17(1): 174.
21
Han J, Kaufman RJ. The role of ER stress in lipid metabolism and lipotoxicity[J]. J Lipid Res, 2016, 57(8): 1329-1338.
22
Volmer R, der Ploeg K van, Ron D. Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains[J]. Proc Natl Acad Sci U S A, 2013, 110(12): 4628-4633.
23
Velázquez AP, Tatsuta T, Ghillebert R, et al. Lipid droplet-mediated ER homeostasis regulates autophagy and cell survival during starvation[J]. J Cell Biol, 2016, 212(6): 621-631.
24
Chung KP, Hsu CL, Fan LC, et al. Mitofusins regulate lipid metabolism to mediate the development of lung fibrosis[J]. Nat Commun, 2019, 10(1): 3390.
25
Shin H, Park S, Hong J, et al. Overexpression of fatty acid synthase attenuates bleomycin induced lung fibrosis by restoring mitochondrial dysfunction in mice[J]. Sci Rep, 2023, 13(1): 9044.
26
Jung MY, Kang JH, Hernandez DM, et al. Fatty acid synthase is required for profibrotic TGF-beta signaling[J]. FASEB J, 2018, 32(7): 3803-3815.
27
Hwang S, Chung KW. Targeting fatty acid metabolism for fibrotic disorders[J]. Arch Pharm Res, 2021, 44(9-10): 839-856.
28
Genovese T, Mazzon E, Paola RD, et al. Role of endogenous and exogenous ligands for the peroxisome proliferator-activated receptor alpha in the development of bleomycin-induced lung injury[J]. Shock, 2005, 24(6): 547-555.
29
Cui HC, Xie N, Banerjee S, et al. Lung myofibroblasts promote macrophage profibrotic activity through lactate-induced histone lactylation[J]. Am J Respir Cell Mol Biol, 2021, 64(1): 115-125.
30
Schwörer S, Pavlova NN, Cimino FV, et al. Fibroblast pyruvate carboxylase is required for collagen production in the tumour microenvironment[J]. Nat Metab, 2021, 3(11): 1484-1499.
31
Higo H, Ohashi K, Tomida S, et al. Identification of targetable kinases in idiopathic pulmonary fibrosis[J]. Respir Res, 2022, 23(1): 20.
32
Ducker GS, Rabinowitz JD. One-carbon metabolism in health and disease[J]. Cell Metab, 2017, 25(1): 27-42.
33
Zhu ZY, Kiang KMY, Li N, et al. Folate enzyme MTHFD2 links one-carbon metabolism to unfolded protein response in glioblastoma[J]. Cancer Lett, 2022, 549: 215903.
34
Hamanaka RB, O′Leary EM, Witt LJ, et al. Glutamine metabolism is required for collagen protein synthesis in lung fibroblasts[J]. Am J Respir Cell Mol Biol, 2019, 61(5): 597-606.
[1] 陈天, 李歆, 刘开政, 邓永强. 口腔钛种植体成骨性能的研究进展[J]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 200-205.
[2] 杜彦斌, 黄涛, 寇天阔, 石英. 双镜联合根治术与腹腔镜根治术在早期结肠癌患者中的应用效果[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 275-278.
[3] 鲁鑫, 杨琴, 许佳怡. 不同术式治疗恶性梗阻性黄疸疗效及对免疫功能的影响[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 180-183.
[4] 邓楠, 刘平. 广东省医学会泌尿外科疑难病例多学科会诊(第14期)——左肾盂恶性肿瘤并左肾巨大积液[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 296-299.
[5] 黄兴, 王蕾, 夏丹. 靶向免疫治疗时代下减瘤性肾切除术在转移性肾细胞癌治疗中的价值[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 208-213.
[6] 周慧宇, 吕定阳, 双卫兵. 联合系统性免疫炎症指数和预后营养指数预测腹腔镜肾切除术后肾癌患者的预后[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 225-231.
[7] 邓永豪, 曹嘉正. 长链非编码RNA与肾癌的关系及其在肾癌中的临床应用[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 289-293.
[8] 曹飞, 庞俊. 前列腺癌免疫微环境中免疫抑制性细胞分类及其作用机制[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 121-125.
[9] 黄艺承, 梁海祺, 何其焕, 韦发烨, 杨舒博, 谭舒婷, 翟高强, 程继文. 机器学习模型评估RAS亚家族基因对膀胱癌免疫治疗的作用[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 131-140.
[10] 谭智勇, 付什, 李宁, 王海峰, 王剑松. 膀胱小细胞癌发病机制及其诊疗研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 183-187.
[11] 张燕, 许丁伟, 胡满琴, 李新成, 李翱, 黄洁. 胆囊癌免疫治疗的知识图谱可视化分析[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 319-327.
[12] 曾谣, 谢琴, 陈显育, 王平根, 毛玲秋, 何丹玲, 杜飞, 郑希彦, 何函樨. CDC42EP2基因与肝癌预后、免疫细胞浸润关系及其对细胞迁移侵袭的影响[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 363-369.
[13] 陈显育, 曾谣, 莫钊鸿, 翟航, 张广权, 钟造茂, 陈署贤. 生物信息学分析CETP基因在肝癌中表达及其对预后和免疫的影响[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 214-219.
[14] 宋燕京, 乔江春, 宋京海. 中晚期肝癌TACE联合免疫靶向转化治疗后右半肝切除术一例[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 227-230.
[15] 白睿, 孙备. 自身免疫性胰腺炎和胰腺导管腺癌鉴别的策略与思考[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 121-126.
阅读次数
全文


摘要