切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2024, Vol. 17 ›› Issue (03) : 385 -391. doi: 10.3877/cma.j.issn.1674-6902.2024.03.008

论著

血浆NGS-ctDNA对EGFR-TKIs治疗晚期NSCLC患者的预后意义
赵海燕1, 靳海涛1,(), 孔莺1, 何瑞远1   
  1. 1. 710089 西安,西安交通大学第一附属医院东院肿瘤内科
  • 收稿日期:2024-04-06 出版日期:2024-06-25
  • 通信作者: 靳海涛
  • 基金资助:
    陕西省自然科学基础研究计划项目(2020JM-369)

Prognostic significance of plasma NGS-ctDNA in patients with advanced NSCLC treated with EGFR-TKIs

Haiyan Zhao1, Haitao Jin1,(), ying Kong1, Ruiyuan He1   

  1. 1. Department of Medical Oncology, East District of The First Affiliated Hospital of Xi′an Jiaotong University, Xi′an, Shaanxi 710089, China
  • Received:2024-04-06 Published:2024-06-25
  • Corresponding author: Haitao Jin
引用本文:

赵海燕, 靳海涛, 孔莺, 何瑞远. 血浆NGS-ctDNA对EGFR-TKIs治疗晚期NSCLC患者的预后意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 385-391.

Haiyan Zhao, Haitao Jin, ying Kong, Ruiyuan He. Prognostic significance of plasma NGS-ctDNA in patients with advanced NSCLC treated with EGFR-TKIs[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2024, 17(03): 385-391.

目的

分析血浆循环肿瘤DNA(circulating tumor DNA, ctDNA)对表皮生长因子受体(epidermal growth factor receptor, EGFR)-酪氨酸激酶抑制剂(tyrosine kinase inhibitors, TKIs)治疗晚期非小细胞肺癌(non-small cell lung cancer, NSCLC)患者的预后意义。

方法

选取2019年2月至2022年12月我院收治的EGFR-TKI治疗前进行基线ctDNA和早期动态血浆ctDNA测试的患者81例。使用基于二代测序(next-generation sequencing, NGS)的平台对患者进行血浆ctDNA突变检测,记录基线血浆ctDNA最大突变等位基因频率(mutated allele frequency, MAF),监测治疗第1周期81例和第2周期21例血浆ctDNA状态。主要结局为总生存期(overall survival, OS)和无进展生存期(progression-free survival, PFS)。次要结局为TKIs靶向治疗治疗2个周期后的疾病控制率(disase control rate, DCR)。

结果

81例患者的基线ctDNA评估中,EGFR-TKI敏感突变和其他频繁突变的驱动基因,其中38例存在双重或三重突变,最常见的EGFR+TP53突变19例(50.00%)。治疗后第1周期,ctDNA早期清除率为58.02%。21例第2周期进行重复测试的患者,早期ctDNA清除的患者可能具有持续性(76.47% vs. 0%,P=0.005)。基线血浆ctDNA突变基因个数与EGFR-TKIs治疗后DCR有关,DCR组血浆ctDNA突变≥2个的例数35.94%低于疾病进展88.24%(P<0.05)。单因素和多因素COX回归分析显示,血浆ctDNA突变≥2个是影响NSCLC患者PFS(HR=2.900;95%CI:1.583~5.312;P=0.001)和OS(HR=2.063;95%CI:1.183~3.600;P=0.011)预后的危险因素。与血浆ctDNA突变<2个的患者相比,血浆ctDNA突变≥2个的患者累积PFS率和中位PFS明显变小(χ2=13.730,P<0.001);累积OS率和中位OS明显变小(χ2=7.791,P=0.005)。

结论

血浆NGS-ctDNA突变≥2个与晚期NSCLC患者EGFR-TKIs治疗无效和预后不良高风险有关。

Objective

To investigate the prognostic value of plasma circulating tumor DNA (ctDNA) in epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) in patients with advanced non-small cell lung cancer (NSCLC).

Methods

Between February 2019 and December 2022, a total of 81 patients who underwent baseline ctDNA and at least one early dynamic plasma ctDNA test prior to EGFR-TKI treatment were enrolled. All patients were tested for plasma ctDNA mutations using a platform based on second-generation sequencing (NGS), and the maximum mutated allele frequency (MAF) of baseline plasma ctDNA was recorded, and to monitor the plasma ctDNA status in the first cycle (n=81) and the second cycle (n=21) of treatment. The main outcomes were overall survival (OS) and progression-free survival (PFS). The secondary outcome was disease control rate (DCR) after 2 cycles of TKIs targeted therapy.

Results

In a baseline ctDNA assessment of 81 patients, all had EGFR-TKI sensitive mutations and other frequently mutated driver genes, and 38 had double or triple mutations, the most common being the EGFR+ TP53 mutation 50.0% (19/38). In the first cycle after treatment, the early ctDNA clearance rate was 58.02%. For the 21 patients who had repeated testing at cycle 2, those with early ctDNA clearance were more likely to have sustained ctDNA clearance compared to those without early ctDNA clearance (76.47% vs. 0%, P=0.005). The number of ctDNA mutations in baseline plasma was associated with DCR after EGFR-TKIs treatment, and fewer patients in the DCR group had ≥2 ctDNA mutations (35.94% vs. 88.24%, P=0.001). Univariate and multivariate COX regression analysis showed that plasma ctDNA mutations ≥2 affected PFS in NSCLC patients (HR=2.900; 95%CI: 1.583-5.312; P=0.001) and OS (HR=2.063; 95%CI: 1.183-3.600; P=0.011) Independent risk factors for prognosis. Compared with patients with < 2 plasma ctDNA mutations, patients with ≥2 plasma ctDNA mutations had significantly lower cumulative PFS rate and median PFS (χ2=13.730, P<0.001). The cumulative OS rate and median OS were significantly smaller (χ2=7.791, P=0.005).

Conclusion

Plasma NGS-ctDNA mutations ≥2 are associated with a higher risk of EGFR-TKIs treatment failure and poor prognosis in patients with advanced NSCLC.

图1 绘制基线血浆ctDNA MAF的ROC曲线,并计算曲线下的面积
表1 血浆ctDNA突变与NSCLC患者临床资料[(±s),(%)]
表2 单因素COX回归分析晚期NSCLC患者PFS或OS的相关因素
表3 多因素COX回归分析晚期NSCLC患者PFS或OS的相关因素
图2 Kaplan-Meier曲线。注:A:血浆ctDNA突变与PFS的关系;B:血浆ctDNA突变与OS的关系
1
Padinharayil H, Varghese J, John MC, et al. Non-small cell lung carcinoma (NSCLC): Implications on molecular pathology and advances in early diagnostics and therapeutics[J]. Genes & Diseases, 2023, 10(3): 960-989.
2
Rolfo C, Mack P, Scagliotti GV, et al. Liquid biopsy for advanced NSCLC: a consensus statement from the international association for the study of lung cancer[J]. J Thorac Oncol, 2021, 16(10): 1647-1662.
3
王洪武,金发光. 晚期非小细胞肺癌多域整合治疗策略[J/CD]. 中华肺部疾病杂志(电子版), 2022, 15(4): 457-461.
4
Zhou Z, Li M. Targeted therapies for cancer[J]. BMC Med, 2022, 20(1): 90-92.
5
Zou J, Zeng Y, Wu F. Opportunities and challenges of neoadjuvant targeted therapy in nonsmall cell lung cancer[J]. Current Opinion in Oncology, 2023, 35(1): 22-30.
6
徐明翠,王 剑,阳 韬. 晚期非小细胞肺癌靶向治疗进展[J]. 临床肺科杂志2023, 28(1): 108-116.
7
Zhong L, Li Y, Xiong L, et al. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives[J]. Signal Transduct Target Ther, 2021, 6(1): 1-48.
8
Chhouri H, Alexandre D, Grumolato L. Mechanisms of acquired resistance and tolerance to EGFR targeted therapy in non-small cell lung cancer[J]. Cancers (Basel), 2023, 15(2): 504-516.
9
Li YZ, Kong SN, Liu YP, et al. Can liquid biopsy based on ctDNA/cfDNA replace tissue biopsy for the precision treatment of EGFR-Mutated NSCLC[J]. J Clin Med, 2023, 12(4): 1438-1466.
10
杜静怡,徐兴祥. 循环肿瘤细胞在非小细胞肺癌中的研究进展[J/CD]. 中华肺部疾病杂志(电子版), 2023, 16(4): 596-600.
11
Chan HT, Chin YM, Low SK. Circulating tumor DNA-based genomic profiling assays in adult solid tumors for precision oncology: recent advancements and future challenges[J]. Cancers, 2022, 14(13): 3275-3301.
12
Mack PC, Miao J, Redman MW, et al. Circulating tumor DNA kinetics predict progression-free and overall survival in EGFR TKI-treated patients with EGFR-mutant NSCLC (SWOG S1403)[J]. Clin Cancer Res, 2022, 28(17): 3752-3760.
13
Song Y, Hu C, Xie Z, et al. Circulating tumor DNA clearance predicts prognosis across treatment regimen in a large real-world longitudinally monitored advanced non-small cell lung cancer cohort[J]. Transl Lung Cancer Res, 2020, 9(2): 269-279.
14
Zhang Y, Xiong L, Xie F, et al. Next-generation sequencing of tissue and circulating tumor DNA: Resistance mechanisms to EGFR targeted therapy in a cohort of patients with advanced non-small cell lung cancer[J]. Cancer Med, 2021, 10(14): 4697-4709.
15
Remon J, Swalduz A, Planchard D, et al. Outcomes in oncogenic-addicted advanced NSCLC patients with actionable mutations identified by liquid biopsy genomic profiling using a tagged amplicon-based NGS assay[J]. PLoS One, 2020, 15(6): e0234302.
16
Zheng J, Wang Y, Hu C, et al. Predictive value of early kinetics of ctDNA combined with cfDNA and serum CEA for EGFR-TKI treatment in advanced non-small cell lung cancer[J]. Thoracic Cancer, 2022, 13(22): 3162-3173.
17
Plagnol V, Woodhouse S, Howarth K, et al. Analytical validation of a next generation sequencing liquid biopsy assay for high sensitivity broad molecular profiling[J]. PLoS One, 2018, 13(3): e0193802.
18
Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1)[J]. Eur J Cancer, 2009, 45(2): 228-247.
19
Zheng J, Wang Y, Hu C, et al. Predictive value of early kinetics of ctDNA combined with cfDNA and serum CEA for EGFR‐TKI treatment in advanced non-small cell lung cancer[J]. Thorac Cancer, 2022, 13(22): 3162-3173.
20
Aldea M, Friboulet L, Apcher S, et al. Precision medicine in the era of multi-omics: can the data tsunami guide rational treatment decision?[J]. ESMO Open, 2023, 8(5): 101642-10166.
21
Ai X, Cui J, Zhang J, et al. Clonal architecture of EGFR mutation predicts the efficacy of EGFR-tyrosine kinase inhibitors in advanced NSCLC: a prospective multicenter study (NCT03059641)[J]. Clin Cancer Res, 2021, 27(3): 704-712.
22
Liang X, Zhang W, Li J, et al. Clinical implications of ctDNA for EGFR-TKIs as first-line treatment in NSCLC[J]. J Cancer Res Clin Oncol, 2023, 149(3): 1211-1220.
23
Pritchett MA, Camidge DR, Patel M, et al. Prospective clinical validation of the in vision first-lung circulating tumor DNA assay for molecular profiling of patients with advanced nonsquamous non-small-cell lung cancer[J]. JCO Precis Oncol, 2019, 3: PO.18.00299.
24
Hofman P. EGFR status assessment for better care of early stage non-small cell lung carcinoma: What is changing in the daily practice of pathologists[J]. Cells, 2021, 10(8): 2157-2171.
25
Liang R, Li X, Li W, et al. DNA methylation in lung cancer patients: Opening a "window of life" under precision medicine[J]. Biomed Pharmacother, 2021, 144: 112202-112213.
26
Qin K, Hou H, Liang Y, et al. Prognostic value of TP53 concurrent mutations for EGFR- TKIs and ALK-TKIs based targeted therapy in advanced non-small cell lung cancer: a meta-analysis[J]. BMC Cancer, 2020, 20(1): 328-342.
27
杨远雪,蔡志强,谢 茜,等. 共突变基因与晚期非小细胞肺癌靶向治疗预后生存的相关性分析[J]. 现代肿瘤医学2022, 30(19): 3503-3509.
28
Qiu X, Wang Y, Liu F, et al. Survival and prognosis analyses of concurrent PIK3CA mutations in EGFR mutant non-small cell lung cancer treated with EGFR tyrosine kinase inhibitors[J]. Am J Cancer Res, 2021, 11(6): 3189-3200.
29
Liu S, Yu J, Zhang H, et al. TP53 co-mutations in advanced EGFR-mutated non-small cell lung cancer: Prognosis and therapeutic strategy for cancer therapy[J]. Frontiers in Oncology, 2022, 12: 860563-860573.
30
Ferrara MG, Martini M, D′Argento E, et al. PTEN loss as a predictor of tumor heterogeneity and poor prognosis in patients with EGFR-mutant advanced non-small-cell lung cancer receiving tyrosine kinase inhibitors[J]. Clin Lung Cancer, 2021, 22(4): 351-360.
[1] 孙建娜, 孔令军, 任崇禧, 穆坤, 王晓蕊. 266例首诊Ⅳ期乳腺癌手术患者预后分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 502-505.
[2] 袁庆港, 刘理想, 张亮, 周世振, 高波, 丁超, 管文贤. 尿素-肌酐比值(UCR)可预测结直肠癌患者术后的长期预后[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 506-509.
[3] 黄福, 王黔, 金相任, 唐云川. VEGFR2、miR-27a-5p在胃癌组织中的表达与临床病理参数及预后的关系研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 558-561.
[4] 蔡大明, 陆晓峰, 王行舟, 王萌, 刘颂, 夏雪峰, 沈晓菲, 杜峻峰, 管文贤. 三级淋巴结构在胃神经内分泌瘤中的预后价值及预后预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 401-405.
[5] 达热拜·热达提, 刘林, 赵为民, 孟涛, 雷程, 金博, 毕建军, 李新宇, 王海江. 中低位直肠癌新辅助放化疗后侧方淋巴结清扫术的临床观察[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 415-418.
[6] 李娇娇, 张军, 徐顺. 全程新辅助治疗联合全直肠系膜切除术对局部进展期直肠癌预后的影响研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 283-286.
[7] 王东阳, 林琳, 娄熙彬. SII对局部进展期胃癌nCRT+腹腔镜胃癌根治术后并发症及预后的影响研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 315-318.
[8] 聂彬, 赵铁军, 于云宝, 李欢, 谢林峻. 单孔加一孔腹腔镜手术与传统腹腔镜手术治疗乙状结肠癌的疗效与分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 330-333.
[9] 李勇, 彭天明, 王倩倩, 陈育纯, 蒲小勇, 刘久敏. 基于失巢凋亡相关基因的膀胱癌预后模型构建及分析[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 331-339.
[10] 钱承博, 殷虎明, 邱峰, 侯建全, 黄玉华, 魏雪栋. 高龄患者行腹腔镜膀胱根治W形回肠新膀胱术的临床价值与风险评估[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 346-352.
[11] 张斌, 孙代宇, 胡昕, 韩菲, 李久明, 李功雨, 吴伟力, 冯宝富, 彭国辉. 评分系统预测不同经验手术者输尿管软镜术后结石清除率准确性的比较研究[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 353-360.
[12] 刘中文, 刘畅, 高洋, 刘东, 林世庆, 杨建华, 赵福义. 尿液microRNA-326与腹腔镜根治性膀胱切除术治疗膀胱癌患者预后的相关性研究[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 386-391.
[13] 周慧宇, 吕定阳, 双卫兵. 联合系统性免疫炎症指数和预后营养指数预测腹腔镜肾切除术后肾癌患者的预后[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 225-231.
[14] 杨秀君, 崔梦莹, 刘水, 盛基尧, 张丹. 基于SEER数据库胰头部胰腺神经内分泌癌患者预后列线图构建与验证[J]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 520-525.
[15] 安亚楠, 王端然, 郭甜甜, 武希润. 幽门螺杆菌阴性胃黏膜相关淋巴组织淋巴瘤的研究进展[J]. 中华消化病与影像杂志(电子版), 2024, 14(03): 268-274.
阅读次数
全文


摘要