切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2024, Vol. 17 ›› Issue (04) : 655 -658. doi: 10.3877/cma.j.issn.1674-6902.2024.04.032

综述

外泌体非编码RNAs与肺癌放射治疗的研究进展
蔡定钦1, 孙建国2, 陈旭3,()   
  1. 1. 400037 重庆,陆军(第三)军医大学第二附属医院肿瘤科;410003 长沙,中国人民解放军联勤保障部队第921医院肿瘤科
    2. 400037 重庆,陆军(第三)军医大学第二附属医院肿瘤科
    3. 400037 重庆,陆军(第三)军医大学第二附属医院医院医务处
  • 收稿日期:2024-03-17 出版日期:2024-08-25
  • 通信作者: 陈旭
  • 基金资助:
    国家自然科学基金(82172670,82473261); 重庆市自然科学基金(CSTB2022NSCQ-MSX1356); 重庆市医学领军人才(YXLJ202401)

Research progress on exosomal non­coding RNAs and cancer radiotherapy

Dingqin Cai, Jianguo Sun, Xu Chen()   

  • Received:2024-03-17 Published:2024-08-25
  • Corresponding author: Xu Chen
引用本文:

蔡定钦, 孙建国, 陈旭. 外泌体非编码RNAs与肺癌放射治疗的研究进展[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 655-658.

Dingqin Cai, Jianguo Sun, Xu Chen. Research progress on exosomal non­coding RNAs and cancer radiotherapy[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2024, 17(04): 655-658.

肺癌(carcinoma of the lungs)目前是全人类健康的严重威胁之一,放射疗法是肿瘤治疗中的一项重要手段,其通过高能射线致使癌细胞DNA断裂,从而促进癌细胞死亡。但是肿瘤细胞的放射抵抗性一直是制约放射治疗效果的关键因素。近年来,随着分子生物学的快速发展,外泌体及其携带的非编码RNAs(non-coding RNAs, ncRNAs)在肿瘤生物学行为中的调控作用逐渐受到重视,成为新的研究热点。与此同时外泌体及其携带的ncRNAs对肺癌放射治疗中的潜在作用的研究越来越多,本文旨在综述外泌体ncRNAs在肺癌放射治疗中的研究进展,从多个角度为外泌体ncRNAs在癌症放射治疗中的调控作用提供参考。

1
Kalluri Raghu, LeBleu Valerie S. The biology function and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977.
2
Caby Marie-Pierre, Lankar Danielle, Bonnerot Christian, et al. Exosomal-like vesicles are present in human blood plasma[J]. Int Immunol, 2005, 17(7): 879-887.
3
TrairakPisitkun, Shen Rong-Fong, Knepper Mark A. Identification and proteomic profiling of exosomes in human urine[J]. Proc Natl Acad Sci USA, 2004, 101(36): 13368-13373.
4
Sullivan Robert, Saez Fabrice, Girouard Julie, et al. Role of exosomes in sperm maturation during the transit along the male reproductive tract[J]. Blood Cells Mol Dis, 2005, 35(1): 1-10.
5
Valadi Hadi, Ekström Karin, Bossios Apostolos, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nat Cell Biol, 2007, 9(6): 654-659.
6
Cully Megan. Exosome-based candidates move into the clinic[J]. Nat Rev Drug Discov, 2021, 20(1): 6-7.
7
Zhang Lin, Yu Dihua. Exosomes in cancer development, metastasis,and immunity[J]. BiochimBiophys Acta Rev Cancer, 2019, 1871(2): 455-468.
8
Xu Rong, Rai Alin, Chen Maoshan. Extracellular vesicles in cancer-implications for future improvements in cancer care[J]. Nat Rev Clin Oncol, 2018, 15(10): 617-638.
9
Colombo Marina, Raposo Graça, Théry Clotilde, et al. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles[J]. Annu Rev Cell Dev Biol, 2014, 30: 255-89.
10
Mathieu Mathilde, Martin-Jaular Lorena, Lavieu Grégory, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication[J]. Nat Cell Biol, 2019, 21(1): 9-17.
11
Slack Frank J, Chinnaiyan Arul M. The role of non-coding RNAs in oncology[J]. Cell, 2019, 179(5): 1033-1055.
12
Esquela-Kerscher Aurora, Slack Frank J. Oncomirs-microRNAs with a role in cancer[J]. Nat Rev Cancer, 2006, 6(4): 259-269.
13
Kopp Florian, Mendell Joshua T. Functional classification and experimental dissection of long noncoding RNAs[J]. Cell, 2018, 172(3): 393-407.
14
Tsai Miao-Chih, Manor Ohad, Wan Yue, et al. Long noncoding RNA as modular scaffold of histone modification complexes[J]. Science, 2010, 329(5992): 689-693.
15
Kristensen Lasse S, Jakobsen Theresa, Hager Henrik, et al. The emerging roles of circRNAs in cancer and oncology[J]. Nat Rev Clin Oncol, 2022, 19(3): 188-206.
16
Cheema Amrita K, Hinzman Charles P, Mehta Khyati Y, et al. Plasma derived exosomal biomarkers of exposure to ionizing radiation in nonhuman primates[J]. Int J Mol Sci, 2018, 19(11): 3427.
17
Jabbari Nasrollah, Nawaz Muhammad, Rezaie Jafar. Ionizing radiation increases the activity of exosomal secretory pathway in MCF-7 human breast cancer cells: A possible way to communicate resistance against radiotherapy[J]. Int J Mol Sci, 2019, 20(15): 3649.
18
Yang Zhenyi, Zhong Wen, Yang Liang, et al. The emerging role of exosomes in radiotherapy[J].Cell Commun Signal, 2022, 20(1): 171.
19
Chen X, Xu Y, Jiang L, et al. miRNA-218-5p increases cell sensitivity by inhibiting PRKDC activity in radiation-resistant lung carcinoma cells[J]. Thorac Cancer, 2021, 12(10): 1549-1557.
20
Luo A, Zhou X, Shi X, et al. Exosome-derived miR-339-5p mediates radiosensitivity by targeting Cdc25A in locally advanced esophageal squamous cell carcinoma[J]. Oncogene, 2019, 38(25): 4990-5006.
21
Konishi H, Hayashi M, Taniguchi K, et al. The therapeutic potential of exosomal miR-22 for cervical cancer radiotherapy[J]. Cancer Biol Ther, 2020, 21(12): 1128-1135.
22
Sun H, Zhu R, Guo X, et al. Exosome miR-101-3p derived from bone marrow mesenchymal stem cells promotes radiotherapy sensitivity in non-small cell lung cancer by regulating DNA damage repair and autophagy levels through EZH2[J]. Pathol Res Pract, 2024, 256: 155271.
23
Lv X, Li Z, Dai Y, et al. The mir-199b-5p encapsulated in adipocyte-derived exosomes mediates radioresistance of colorectal cancer cells by targeting JAG1[J]. Heliyon, 2024, 10(2): e24412.
24
Chen X, Liu J, Zhang Q, et al. Exosome-mediated transfer of miR-93-5p from cancer-associated fibroblasts confer radioresistance in colorectal cancer cells by downregulating FOXA1 and upregulating TGFB3[J]. J Exp Clin Cancer Res, 2020, 39(1): 65.
25
Lee SM, Cho J, Choi S, et al. HDAC5-mediated exosomal Maspin and miR-151a-3p as biomarkers for enhancing radiation treatment sensitivity in hepatocellular carcinoma[J]. Biomater Res, 2023, 27(1): 134.
26
Zhang F, Sang Y, Chen D, et al. M2 macrophage-derived exosomal long non-coding RNA AGAP2-AS1 enhances radiotherapy immunity in lung cancer by reducing microRNA-296 and elevating NOTCH2[J]. Cell Death Dis, 2021, 12(5): 467.
27
Chen L, Huang S, Huang J, et al. Role and mechanism of exosome-derived long noncoding RNA HOTAIR in lung cancer[J]. ACS Omega, 2021, 6(27): 17217-17227.
28
Liu Y, Chen X, Chen X, et al. Long non-coding RNA HOTAIR knockdown enhances radiosensitivity through regulating microRNA-93/ATG12 axis in colorectal cancer[J]. Cell Death Di, 2020, 11(3): 175.
29
Jing L, Yuan W, Ruofan D, et al. HOTAIR enhanced aggressive biological behaviors and induced radio-resistance via inhibiting p21 in cervical cancer[J]. Tumour Bio, 2015, 36(5): 3611-3619.
30
Oh EJ, Kim SH, Yang WI, et al. Long Non-coding RNA HOTAIR Expression in Diffuse Large B-Cell Lymphoma: In Relation to Polycomb Repressive Complex Pathway Proteins and H3K27 Trimethylation[J]. J Pathol Transl Med, 2016, 50(5): 369-376.
31
Liu Hongxia, Zheng Wang, Chen Qianping, et al. lncRNA CASC19 Contributes to Radioresistance of Nasopharyngeal Carcinoma by Promoting Autophagy via AMPK-mTOR Pathway[J]. Int J Mol Sci, 2021, 22(3): 1407.
32
He Y, Zheng L, Yuan M, et al. Exosomal circPRRX1 functions as a ceRNA for miR-596 to promote the proliferation, migration, invasion, and reduce radiation sensitivity of gastric cancer cells via the upregulation of NF-κB activating protein[J]. Anticancer Drugs, 2022, 33(10): 1114-1125.
Wang Y, Liu J, Ma J, et al. Exosomal circHIPK3 derived from cancer-associated fibroblasts contributes to breast cancer cell proliferation and metastasis via sponging miR-124 and regulating RHOA[J]. Mol Cancer, 2019, 18(1): 11.
34
Ti Dongdong, Hao Haojie, Tong Chuan, et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b[J]. J Transl Med, 2015, 13: 308.
35
Yi Xiaomeng, Wei Xuxia, Lv Haijin, et al. Exosomes derived from microRNA-30b-3p overexpressing mesenchymal stem cells protect against lipopolysaccharide-induced acute lung injury by inhibiting SAA3[J]. Exp Cell Res, 2019, 383(2): 111454.
36
Tao Shi-Cong, Guo Shang-Chun, Li Min. Chitosan wound dressings incorporating exosomes derived from microRNA-126-overexpressing synovium mesenchymal stem cells provide sustained release of exosomes and heal full-thickness skin defects in a diabetic rat model[J]. Stem Cells Transl Med, 2017, 6(3): 736-747.
37
Gao Shaoying, Chen Tao, Hao Yi, et al. Exosomal miR-135a derived from human amnion mesenchymal stem cells promotes cutaneous wound healing in rats and fibroblast migration by directly inhibiting LATS2 expression[J]. Stem Cell Res Ther, 2020, 11(1): 56.
38
Wang Huike, Zhang Nini, Wang Xue, et al. Emerging role of mesenchymal stem cell-derived exosome microRNA in radiation injury[J]. Int J Radiat Biol, 2024, 100(7): 996-1008.
39
Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines[J]. J Extracell Vesicles, 2018, 7(1): 1535750.
40
Yang Dongbin, Zhang Weihong, Zhang Huanyun, et al. Progress, opportunity, and perspective on exosome isolation-efforts for efficient exosome-based theranostics[J]. Theranostics, 2020, 10(8): 3684-3707.
41
Han F, Huang D, Huang X, et al. Exosomal microRNA-26b-5p down-regulates ATF2 to enhance radiosensitivity of lung adenocarcinoma cells[J]. J Cell Mol Med, 2020, 24(14): 7730-7742.
42
王志鹏,张 倩,黄燕华,等. 肺鳞癌血清外泌体hsa_circ_0018430的表达和临床意义[J/CD]. 中华肺部疾病杂志(电子版), 2023, 16(6): 774-778.
43
Cho O, Kim DW, Cheong JY. Screening plasma exosomal RNAs as diagnostic markers for cervical cancer: An analysis of patients who underwent primary chemoradiotherapy[J]. Biomolecules, 2021, 11(11): 1691.
44
Alvarez-Erviti Lydia, Seow Yiqi, Yin Haifang, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes[J]. Nat Biotechnol, 2019, 29(4): 341-345.
45
Ghasempour Elham, Hesami Shilan, Movahed Elaheh, et al. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy in the brain tumors[J]. Stem Cell Res Ther, 2022, 13(1): 527.
46
Zhang Ying, Liu Qiqi, Zhang Xinmeng, et al. Recent advances in exosome-mediated nucleic acid delivery for cancer therapy[J]. J Nanobiotechnology, 2022, 20(1): 279.
[1] 刘政宏, 袁春銮. 乳腺癌患者血清外泌体中长链非编码RNA BC200的表达及临床意义[J]. 中华乳腺病杂志(电子版), 2024, 18(04): 212-216.
[2] 费扬, 赵晗希, 孙丽琴, 楼琴华, 胡骏程. 银杏叶提取物对糖尿病肾病患者的疗效及其对尿液外泌体miR-342-3p的干预研究[J]. 中华危重症医学杂志(电子版), 2024, 17(03): 219-224.
[3] 林琳, 田思萌, 于永华, 徐飞飞, 黄明莉. 干细胞及其外泌体治疗宫腔黏连的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 271-275.
[4] 曹飞, 庞俊. 前列腺癌免疫微环境中免疫抑制性细胞分类及其作用机制[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 121-125.
[5] 邓瑞锋, 程璐, 周宇林, 刘远灵, 江文聪, 江敏耀, 江福能, 习明. TGF-β1诱导骨髓间充质干细胞外泌体分泌miR-424-3p促进前列腺癌细胞增殖及转移[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 82-89.
[6] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[7] 孙海燕, 周士燕, 张杉杉, 张研, 张茜. 间充质干细胞及其外泌体在高原肺水肿中的潜在治疗机制研究进展[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 186-190.
[8] 梁国豪, 张茜, 张研. 间充质干细胞及其衍生物治疗高原低氧环境下心血管疾病的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 107-112.
[9] 仝心语, 谭凯, 白亮亮, 杜锡林. 外泌体在肝细胞癌诊疗中的应用[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 384-388.
[10] 季鹏程, 鄂一民, 陆晨, 喻春钊. 循环外泌体相关生物标志物在结直肠癌诊断中的研究进展[J]. 中华结直肠疾病电子杂志, 2024, 13(04): 265-273.
[11] 史敬萱, 焦圆圆, 田景玮, 卓莉. 间充质干细胞来源外泌体治疗动物糖尿病肾脏病的效果:Meta分析[J]. 中华肾病研究电子杂志, 2024, 13(02): 79-86.
[12] 胡欣欣, 孟晓凡, 郭兆安. 高血压肾病的发病机制研究进展[J]. 中华肾病研究电子杂志, 2023, 12(06): 339-343.
[13] 辛强, 朱文豪, 何川, 李文臣, 陈勃, 王海峰. 神经胶质细胞来源的外泌体miRNAs对创伤性颅脑损伤后神经炎症的影响[J]. 中华神经创伤外科电子杂志, 2024, 10(03): 169-173.
[14] 蒲丹, 龙煊, 周玉龙, 李甘霖. 血清外泌体miR-224对结直肠癌肝转移患者射频消融治疗后复发的预测价值[J]. 中华消化病与影像杂志(电子版), 2024, 14(01): 45-52.
[15] 张可, 闫琳琳, 王鹏飞, 章秀林, 赵帆, 胡守奎. 外泌体环状RNA在肿瘤免疫和癌症免疫治疗中的作用[J]. 中华临床医师杂志(电子版), 2023, 17(10): 1102-1108.
阅读次数
全文


摘要