1 |
Qadir N, Chang SY. Pharmacologic treatments for acute respiratory distress syndrome[J]. Critical care clinics,2021,37(4):877-893.
|
2 |
Huang QR, Le Y, Li SS, et al. Signaling pathways and potential therapeutic targets in acute respiratory distress syndrome(ARDS)[J]. Respir Res, 2024, 25(1): 30.
|
3 |
Opitz B, Van Laak V, Eitel J, et al. Innate immune recognition in infectious and noninfectious diseases of the lung[J]. Am J Respir Crit Care Med, 2010, 181(12): 1294-1309.
|
4 |
Dolmatova EV, Wang K, Mandavilli R, et al. The effects of sepsis on endothelium and clinical implications[J]. Cardiovasc Res,2021,117(1): 60-73.
|
5 |
Mittal M, Siddiqui MR, Tran K, et al. Reactive oxygen species in inflammation and tissue injury[J]. Antioxid Redox Signal,2014,20(7): 1126-1167.
|
6 |
Cen MY, Ouyang W, Zhang WY, et al. MitoQ protects against hyperpermeability of endothelium barrier in acute lung injury via a Nrf2-dependent mechanism[J]. Redox Biol, 2021, 41: 101936.
|
7 |
Taenaka H, Matthay MA. Mechanisms of impaired alveolar fluid clearance[J]. Anat Rec(Hoboken), 2023.10.1002/ar.25166.
|
8 |
Von Bismarck P, Klemm K, García Wistädt C-F, et al. Selective NF-κB inhibition, but not dexamethasone, decreases acute lung injury in a newborn piglet airway inflammation model[J]. Pulm Pharmacol Ther, 2009, 22(4): 297-304.
|
9 |
Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in the immune system[J]. Annu Rev Immunol,2009, 27: 693-733.
|
10 |
Millar MW, Fazal F, Rahman A. Therapeutic targeting of NF-κB in acute lung injury:a double-edged sword[J]. Cells,2022,11(20):3317.
|
11 |
Liu Y, Chacko BK, Ricksecker A, et al. Modulatory effects of hypercapnia on in vitro and in vivo pulmonary endothelial-neutrophil adhesive responses during inflammation[J]. Cytokine, 2008, 44(1): 108-117.
|
12 |
Chousterman BG,Swirski FK,Weber GF. Cytokine storm and sepsis disease pathogenesis[J]. Semin Immunopathol,2017,39(5):517-528.
|
13 |
Lee JW, Chun W, Lee HJ, et al. The role of macrophages in the development of acute and chronic inflammatory lung diseases[J].Cells, 2021, 10(4): 897.
|
14 |
Fan J, Ye RD, Malik AB. Transcriptional mechanisms of acute lung injury[J]. Am J physiol Lung cell mol physiol, 2001, 281(5):L1037-1050.
|
15 |
李靖华, 张 涛, 张胜逆, 等. 水通道蛋白-1 及核因子κB 在大鼠重症急性胰腺炎肺损伤中的表达及意义[J]. 中华消化外科杂志, 2016, 15(8): 830-835.
|
16 |
Moine P, Mcintyre R, Schwartz MD, et al. NF-kappaB regulatory mechanisms in alveolar macrophages from patients with acute respiratory distress syndrome[J]. Shock, 2000, 13(2): 85-91.
|
17 |
Li G, Jiang X, Liang X, et al. BAP31 regulates the expression of ICAM-1/VCAM-1 via MyD88/NF-κB pathway in acute lung injury mice model[J]. Life Sci, 2023, 313: 121310.
|
18 |
Hsieh PC, Wu YK, Yang MC, et al. Deciphering the role of damage-associated molecular patterns and inflammatory responses in acute lung injury[J]. Life Sci, 2022, 305: 120782.
|
19 |
Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation[J]. Physiolo Rev, 2001, 81(2): 807-869.
|
20 |
Tu Y, Li X, Fu Y, et al. Isocorydine ameliorates IL-6 expression in bone marrow-derived macrophages and acute lung injury induced by lipopolysaccharide[J]. Int J Mol Sci, 2023, 24(5): 4629.
|
21 |
Pei X,Zhang Z,Wang N,et al.Onychiol B attenuates lipopolysaccharideinduced inflammation via MAPK/NF-κB pathways and acute lung injury in vivo[J]. Bioorg Chem, 2023, 132: 106351.
|
22 |
Zhang M, Zhang J, Zhu QM, et al. Inula japonica ameliorated the inflammation and oxidative stress in LPS-induced acute lung injury through the MAPK/NF-κB and Keap1/Nrf2 signalling pathways[J].J Pharm Pharmacol, 2023, 75(2): 287-299.
|
23 |
Xue M, Sun Z, Shao M, et al. Diagnostic and prognostic utility of tissue factor for severe sepsis and sepsis-induced acute lung injury[J]. J Transl Med, 2015, 13: 172.
|
24 |
Lv X,Zheng L,Zhang T,et al. CLCA1 exacerbates lung inflammation via p38 MAPK pathway in acute respiratory distress syndrome[J].Exp Lung Res, 2024, 50(1): 85-95.
|
25 |
Xu Y,Cao L,Chen J,et al. CLCA1 mediates the regulatory effect of IL-13 on pediatric asthma[J]. Front Pediatr, 2022, 10: 959439.
|
26 |
Koc K, Ozek NS, Aysin F, et al. Hispidulin exerts a protective effect against oleic acid induced-ARDS in the rat via inhibition of ACE activity and MAPK pathway[J]. Int J Environ Health Res,2024, 34(2): 755-766.
|
27 |
Guo Y, Zhang H, Lv Z, et al. Up-regulated CD38 by daphnetin alleviates lipopolysaccharide-induced lung injury via inhibiting MAPK/NF-κB/NLRP3 pathway[J].Cell commun signal, 2023, 21(1): 66.
|
28 |
Ruan W, Eltzschig HK, Yuan X. Hypoxia-stabilized RIPK1 promotes cell death[J]. Nat Cell Biol, 2023, 25(7): 921-922.
|
29 |
Figarella K, Kim J, Ruan W, et al. Hypoxia-adenosine axis as therapeutic targets for acute respiratory distress syndrome[J]. Front Immunol, 2024, 15: 1328565.
|
30 |
Taylor CT,Doherty G,Fallon PG,et al. Hypoxia-dependent regulation of inflammatory pathways in immune cells[J]. J Clin Invest, 2016,126(10): 3716-3724.
|
31 |
Nagamine Y,Tojo K,Yazawa T,et al. Inhibition of prolyl hydroxylase attenuates fas ligand-induced apoptosis and lung injury in mice[J].Am J Respir Cell Mol Biol, 2016, 55(6): 878-888.
|
32 |
Tojo K, Tamada N, Nagamine Y, et al. Enhancement of glycolysis by inhibition of oxygen-sensing prolyl hydroxylases protects alveolar epithelial cells from acute lung injury[J]. FASEB J,2018,32(4):2258-2268.
|
33 |
Huang LT, Chou HC, Chen CM. Roxadustat attenuates hyperoxiainduced lung injury by upregulating proangiogenic factors in newborn mice[J]. Pediatr Neonatol, 2021, 62(4): 369-378.
|
34 |
Gong H, Rehman J, Tang H, et al. HIF2α signaling inhibits adherens junctional disruption in acute lung injury[J]. J Clin Invest, 2015, 125(2): 652-664.
|
35 |
Evans CE, Peng Y, Zhu MM, et al. Rabeprazole promotes vascular repair and resolution of sepsis-induced inflammatory lung injury through HIF-1α[J]. Cells, 2022, 11(9): 1425.
|
36 |
Liu M, Liu K, Cheng D, et al. The regulatory role of NLRX1 in innate immunity and human disease[J]. Cytokine, 2022, 160:156055.
|
37 |
Kim HR, Kim MN, Kim EG, et al. NLRX1 knockdown attenuates pro-apoptotic signaling and cell death in pulmonary hyperoxic acute injury[J]. Sci Rep, 2023, 13(1): 3441.
|
38 |
Moore CB, Bergstralh DT, Duncan JA, et al. NLRX1 is a regulator of mitochondrial antiviral immunity[J]. Nature,2008,451(7178):573-577.
|
39 |
Kang MJ, Yoon CM, Kim BH, et al. Suppression of NLRX1 in chronic obstructive pulmonary disease[J]. J Clin Invest,2015,125(6): 2458-2462.
|
40 |
Khan YA,Fan E,Ferguson ND. Precision medicine and heterogeneity of treatment effect in therapies for ARDS[J]. Chest, 2021, 160(5): 1729-1738.
|
41 |
Calfee CS, Delucchi K, Parsons PE, et al. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials[J]. Lancet Respir Med, 2014, 2(8):611-620.
|
42 |
Famous KR, Delucchi K, Ware LB, et al. Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy[J]. Am J Respir Crit Care Med, 2017, 195(3): 331-338.
|
43 |
Delucchi K, Famous KR, Ware LB, et al. Stability of ARDS subphenotypes over time in two randomised controlled trials[J].Thorax, 2018, 73(5): 439-445.
|
44 |
Wilson JG,Calfee CS.ARDS subphenotypes:Understanding a heterogeneous syndrome[J]. Critical care(London, England), 2020, 24(1):102.
|
45 |
林红卫, 李王平, 金发光. PM2.5 激活HIF-1α-NF-κB/VEGF 通路对肺损伤的影响[J/CD]. 中华肺部疾病杂志(电子版),2022, 15(3): 316-322.
|
46 |
许发琼, 贺斌峰, 黄朝旺, 等. 非编码RNA 调控巨噬细胞炎症反应在ALI/ARDS 中的研究进展[J/CD]. 中华肺部疾病杂志(电子版), 2021, 14(5): 667- 680.
|
47 |
李中士, 兰 超, 张文华, 等. Alb、PCT 及NT-proBNP 检测与重症肺炎致ARDS 患者病情的相关性及预后评估效能[J]. 西南医科大学学报, 2023, 46(6): 509-512, 523
|