切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2024, Vol. 17 ›› Issue (05) : 840 -843. doi: 10.3877/cma.j.issn.1674-6902.2024.05.035

综述

NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展
李智1, 冯芸1   
  1. 1.400037 重庆,陆军(第三)军医大学第二附属医院急诊医学科
  • 收稿日期:2024-05-03 出版日期:2024-10-25
  • 基金资助:
    重庆市临床重点专科建设项目(精品项目)

Research progress on NF-κB and MAPK signaling pathways and their potential therapeutic targets in acute respiratory distress syndrome

Zhi Li, Yun Feng   

  • Received:2024-05-03 Published:2024-10-25
引用本文:

李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.

Zhi Li, Yun Feng. Research progress on NF-κB and MAPK signaling pathways and their potential therapeutic targets in acute respiratory distress syndrome[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2024, 17(05): 840-843.

1
Qadir N, Chang SY. Pharmacologic treatments for acute respiratory distress syndrome[J]. Critical care clinics,2021,37(4):877-893.
2
Huang QR, Le Y, Li SS, et al. Signaling pathways and potential therapeutic targets in acute respiratory distress syndrome(ARDS)[J]. Respir Res, 2024, 25(1): 30.
3
Opitz B, Van Laak V, Eitel J, et al. Innate immune recognition in infectious and noninfectious diseases of the lung[J]. Am J Respir Crit Care Med, 2010, 181(12): 1294-1309.
4
Dolmatova EV, Wang K, Mandavilli R, et al. The effects of sepsis on endothelium and clinical implications[J]. Cardiovasc Res,2021,117(1): 60-73.
5
Mittal M, Siddiqui MR, Tran K, et al. Reactive oxygen species in inflammation and tissue injury[J]. Antioxid Redox Signal,2014,20(7): 1126-1167.
6
Cen MY, Ouyang W, Zhang WY, et al. MitoQ protects against hyperpermeability of endothelium barrier in acute lung injury via a Nrf2-dependent mechanism[J]. Redox Biol, 2021, 41: 101936.
7
Taenaka H, Matthay MA. Mechanisms of impaired alveolar fluid clearance[J]. Anat Rec(Hoboken), 2023.10.1002/ar.25166.
8
Von Bismarck P, Klemm K, García Wistädt C-F, et al. Selective NF-κB inhibition, but not dexamethasone, decreases acute lung injury in a newborn piglet airway inflammation model[J]. Pulm Pharmacol Ther, 2009, 22(4): 297-304.
9
Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in the immune system[J]. Annu Rev Immunol,2009, 27: 693-733.
10
Millar MW, Fazal F, Rahman A. Therapeutic targeting of NF-κB in acute lung injury:a double-edged sword[J]. Cells,2022,11(20):3317.
11
Liu Y, Chacko BK, Ricksecker A, et al. Modulatory effects of hypercapnia on in vitro and in vivo pulmonary endothelial-neutrophil adhesive responses during inflammation[J]. Cytokine, 2008, 44(1): 108-117.
12
Chousterman BG,Swirski FK,Weber GF. Cytokine storm and sepsis disease pathogenesis[J]. Semin Immunopathol,2017,39(5):517-528.
13
Lee JW, Chun W, Lee HJ, et al. The role of macrophages in the development of acute and chronic inflammatory lung diseases[J].Cells, 2021, 10(4): 897.
14
Fan J, Ye RD, Malik AB. Transcriptional mechanisms of acute lung injury[J]. Am J physiol Lung cell mol physiol, 2001, 281(5):L1037-1050.
15
李靖华, 张 涛, 张胜逆, 等. 水通道蛋白-1 及核因子κB 在大鼠重症急性胰腺炎肺损伤中的表达及意义[J]. 中华消化外科杂志, 2016, 15(8): 830-835.
16
Moine P, Mcintyre R, Schwartz MD, et al. NF-kappaB regulatory mechanisms in alveolar macrophages from patients with acute respiratory distress syndrome[J]. Shock, 2000, 13(2): 85-91.
17
Li G, Jiang X, Liang X, et al. BAP31 regulates the expression of ICAM-1/VCAM-1 via MyD88/NF-κB pathway in acute lung injury mice model[J]. Life Sci, 2023, 313: 121310.
18
Hsieh PC, Wu YK, Yang MC, et al. Deciphering the role of damage-associated molecular patterns and inflammatory responses in acute lung injury[J]. Life Sci, 2022, 305: 120782.
19
Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation[J]. Physiolo Rev, 2001, 81(2): 807-869.
20
Tu Y, Li X, Fu Y, et al. Isocorydine ameliorates IL-6 expression in bone marrow-derived macrophages and acute lung injury induced by lipopolysaccharide[J]. Int J Mol Sci, 2023, 24(5): 4629.
21
Pei X,Zhang Z,Wang N,et al.Onychiol B attenuates lipopolysaccharideinduced inflammation via MAPK/NF-κB pathways and acute lung injury in vivo[J]. Bioorg Chem, 2023, 132: 106351.
22
Zhang M, Zhang J, Zhu QM, et al. Inula japonica ameliorated the inflammation and oxidative stress in LPS-induced acute lung injury through the MAPK/NF-κB and Keap1/Nrf2 signalling pathways[J].J Pharm Pharmacol, 2023, 75(2): 287-299.
23
Xue M, Sun Z, Shao M, et al. Diagnostic and prognostic utility of tissue factor for severe sepsis and sepsis-induced acute lung injury[J]. J Transl Med, 2015, 13: 172.
24
Lv X,Zheng L,Zhang T,et al. CLCA1 exacerbates lung inflammation via p38 MAPK pathway in acute respiratory distress syndrome[J].Exp Lung Res, 2024, 50(1): 85-95.
25
Xu Y,Cao L,Chen J,et al. CLCA1 mediates the regulatory effect of IL-13 on pediatric asthma[J]. Front Pediatr, 2022, 10: 959439.
26
Koc K, Ozek NS, Aysin F, et al. Hispidulin exerts a protective effect against oleic acid induced-ARDS in the rat via inhibition of ACE activity and MAPK pathway[J]. Int J Environ Health Res,2024, 34(2): 755-766.
27
Guo Y, Zhang H, Lv Z, et al. Up-regulated CD38 by daphnetin alleviates lipopolysaccharide-induced lung injury via inhibiting MAPK/NF-κB/NLRP3 pathway[J].Cell commun signal, 2023, 21(1): 66.
28
Ruan W, Eltzschig HK, Yuan X. Hypoxia-stabilized RIPK1 promotes cell death[J]. Nat Cell Biol, 2023, 25(7): 921-922.
29
Figarella K, Kim J, Ruan W, et al. Hypoxia-adenosine axis as therapeutic targets for acute respiratory distress syndrome[J]. Front Immunol, 2024, 15: 1328565.
30
Taylor CT,Doherty G,Fallon PG,et al. Hypoxia-dependent regulation of inflammatory pathways in immune cells[J]. J Clin Invest, 2016,126(10): 3716-3724.
31
Nagamine Y,Tojo K,Yazawa T,et al. Inhibition of prolyl hydroxylase attenuates fas ligand-induced apoptosis and lung injury in mice[J].Am J Respir Cell Mol Biol, 2016, 55(6): 878-888.
32
Tojo K, Tamada N, Nagamine Y, et al. Enhancement of glycolysis by inhibition of oxygen-sensing prolyl hydroxylases protects alveolar epithelial cells from acute lung injury[J]. FASEB J,2018,32(4):2258-2268.
33
Huang LT, Chou HC, Chen CM. Roxadustat attenuates hyperoxiainduced lung injury by upregulating proangiogenic factors in newborn mice[J]. Pediatr Neonatol, 2021, 62(4): 369-378.
34
Gong H, Rehman J, Tang H, et al. HIF2α signaling inhibits adherens junctional disruption in acute lung injury[J]. J Clin Invest, 2015, 125(2): 652-664.
35
Evans CE, Peng Y, Zhu MM, et al. Rabeprazole promotes vascular repair and resolution of sepsis-induced inflammatory lung injury through HIF-1α[J]. Cells, 2022, 11(9): 1425.
36
Liu M, Liu K, Cheng D, et al. The regulatory role of NLRX1 in innate immunity and human disease[J]. Cytokine, 2022, 160:156055.
37
Kim HR, Kim MN, Kim EG, et al. NLRX1 knockdown attenuates pro-apoptotic signaling and cell death in pulmonary hyperoxic acute injury[J]. Sci Rep, 2023, 13(1): 3441.
38
Moore CB, Bergstralh DT, Duncan JA, et al. NLRX1 is a regulator of mitochondrial antiviral immunity[J]. Nature,2008,451(7178):573-577.
39
Kang MJ, Yoon CM, Kim BH, et al. Suppression of NLRX1 in chronic obstructive pulmonary disease[J]. J Clin Invest,2015,125(6): 2458-2462.
40
Khan YA,Fan E,Ferguson ND. Precision medicine and heterogeneity of treatment effect in therapies for ARDS[J]. Chest, 2021, 160(5): 1729-1738.
41
Calfee CS, Delucchi K, Parsons PE, et al. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials[J]. Lancet Respir Med, 2014, 2(8):611-620.
42
Famous KR, Delucchi K, Ware LB, et al. Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy[J]. Am J Respir Crit Care Med, 2017, 195(3): 331-338.
43
Delucchi K, Famous KR, Ware LB, et al. Stability of ARDS subphenotypes over time in two randomised controlled trials[J].Thorax, 2018, 73(5): 439-445.
44
Wilson JG,Calfee CS.ARDS subphenotypes:Understanding a heterogeneous syndrome[J]. Critical care(London, England), 2020, 24(1):102.
45
林红卫, 李王平, 金发光. PM2.5 激活HIF-1α-NF-κB/VEGF 通路对肺损伤的影响[J/CD]. 中华肺部疾病杂志(电子版),2022, 15(3): 316-322.
46
许发琼, 贺斌峰, 黄朝旺, 等. 非编码RNA 调控巨噬细胞炎症反应在ALI/ARDS 中的研究进展[J/CD]. 中华肺部疾病杂志(电子版), 2021, 14(5): 667- 680.
47
李中士, 兰 超, 张文华, 等. Alb、PCT 及NT-proBNP 检测与重症肺炎致ARDS 患者病情的相关性及预后评估效能[J]. 西南医科大学学报, 2023, 46(6): 509-512, 523
[1] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[2] 樊恒, 孙敏, 朱建华. 红景天苷通过抑制PI3K/AKT/mTOR信号通路对大鼠脓毒症急性肾损伤的保护作用[J]. 中华危重症医学杂志(电子版), 2024, 17(03): 188-195.
[3] 杨茂宪, 沈鹏, 王倩倩, 吴旺, 沈永帅, 蒋禛, 徐龙生, 朱建刚, 刘倍倍. 吡啶甲酸镁联合地塞米松对急性呼吸窘迫综合征大鼠的治疗作用研究[J]. 中华危重症医学杂志(电子版), 2024, 17(03): 196-203.
[4] 刘炯, 彭乐, 马伟, 江斌. 鞘外解剖肝蒂技术治疗肝内胆管细胞癌的疗效评估[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 373-376.
[5] 王东阳, 林琳, 娄熙彬. SII对局部进展期胃癌nCRT+腹腔镜胃癌根治术后并发症及预后的影响研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 315-318.
[6] 魏丁, 乔艳艳, 顾兴, 张燕, 李艳燕, 钱卫生, 潘蕾, 高永恒, 金发光. 体外膜肺氧合救治急性呼吸窘迫综合征不良预后危险因素分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 363-367.
[7] 陈惠燕, 吴瑶, 黄宗炫, 卜歆, 王庆惠, 纪辉涛, 陈银珍, 赵虎. 肾间质纤维化中胶原/DDR2 信号活化对肾成纤维细胞增殖和迁移功能影响的实验研究[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 294-302.
[8] 季加翠, 孙春斌, 罗恩丽. 姜黄素通过调节NF-κB/NLRP3通路减轻LPS诱导小胶质细胞神经炎症损伤[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 193-203.
[9] 李博, 马秀岩, 孙杰. lncRNA TINCR对滋养层HTR-8/SVneo细胞生物学行为的影响及其机制[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 167-172.
[10] 阿卜杜萨拉木·图尔荪麦麦提, 吐尔洪江·吐逊, 温浩. 肝脏缺血-再灌注损伤与cGAS-STING信号通路[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 394-397.
[11] 王子琪, 李萍, 蔡标, 杨秀敏. 雌激素在糖尿病性视网膜病变中作用机制的研究进展[J]. 中华眼科医学杂志(电子版), 2024, 14(03): 187-192.
[12] 倪韫晖, 杨毅, 袁雪燕, 邱海波. 胸壁加压在急性呼吸窘迫综合征中的应用和临床进展[J]. 中华重症医学电子杂志, 2024, 10(03): 243-247.
[13] 陈雪飞, 卜雄建, 张春良. 神经内镜下经鼻蝶窦扩大鞍底入路颅咽管瘤切除术的疗效分析[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(03): 160-165.
[14] 王燕, 梁海乾, 郭姗姗. 炎症小体在创伤性脑损伤中作用的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(03): 177-181.
[15] 靳英, 付小霞, 陈美茹, 袁璐, 郝力瑶. CD147调控MAPK信号通路对结肠癌细胞增殖和凋亡的影响及机制研究[J]. 中华临床医师杂志(电子版), 2024, 18(05): 474-480.
阅读次数
全文


摘要