切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2025, Vol. 18 ›› Issue (03) : 369 -374. doi: 10.3877/cma.j.issn.1674-6902.2025.03.005

论著

甲基胞嘧啶双加氧酶2 对低氧人脐静脉内皮细胞损伤的作用研究
白玉杰1,2, 王枭3, 林宁4, 刘佳姣5, 罗书泓6, 冯健2,(), 李福祥1,2,()   
  1. 1. 646000 泸州,西南医科大学附属医院呼吸内科
    2. 610083 成都,西部战区总医院重症医学科
    3. 610083 成都,西部战区总医院血液科
    4. 610083 成都,西部战区总医院营养科
    5. 400020 重庆,陆军特色医学中心神经外科
    6. 610299 成都,成都市双流区第一人民医院呼吸内科
  • 收稿日期:2025-03-26 出版日期:2025-06-25
  • 通信作者: 冯健, 李福祥
  • 基金资助:
    西部战区总医院应用基础研究项目重点项目(2021-XZYG-A08)四川省干部保健科研课题(川干研2022-1303)

Study on the effects and mechanisms of ten-eleven translocation methylcytosine dioxygenase 2 on hypoxia-induced injury in human umbilical vein endothelial cells

Yujie Bai1,2, Xiao Wang3, Ning Lin4, Jiajiao Liu5, Shuhong Luo6, Jian Feng2,(), Fuxiang Li1,2,()   

  1. 1. Department of Respiratory Medicine,Affiliated Hospital of Southwest Medical University,Luzhou 646000,China
    2. Department of Critical Care Medicine. The General Hospital of Western Theater Command,Chengdu 610083,China
    3. Department of Hematology,The General Hospital of Western Theater Command,Chengdu 610083,China
    4. Department of Nutrition,The General Hospital of Western Theater Command,Chengdu 610083,China
    5. Neurosurgery,Army Characteristic Medical Center,Chongqing 400020,China
    6. Department of Respiratory Medicine,The First People's Hospital of Shuangliu District,Chengdu 610299,China
  • Received:2025-03-26 Published:2025-06-25
  • Corresponding author: Jian Feng, Fuxiang Li
引用本文:

白玉杰, 王枭, 林宁, 刘佳姣, 罗书泓, 冯健, 李福祥. 甲基胞嘧啶双加氧酶2 对低氧人脐静脉内皮细胞损伤的作用研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 369-374.

Yujie Bai, Xiao Wang, Ning Lin, Jiajiao Liu, Shuhong Luo, Jian Feng, Fuxiang Li. Study on the effects and mechanisms of ten-eleven translocation methylcytosine dioxygenase 2 on hypoxia-induced injury in human umbilical vein endothelial cells[J/OL]. Chinese Journal of Lung Diseases(Electronic Edition), 2025, 18(03): 369-374.

目的

分析甲基胞嘧啶双加氧酶2(ten-eleven translocation methylcytosine dioxygenase 2,TET2)对低氧人脐静脉内皮细胞(Human umbilical vein endothelial cells,HUVECs)损伤的作用及机制。

方法

采用生理盐水+常氧处理HUVECs 为Norm-C 组,凝血酶+常氧处理为Norm-M 组,生理盐水+低氧处理为Hypo-M 组,低氧+凝血酶处理为Hypo-M 组;低氧+凝血酶+空载体处理为空载体组、低氧+凝血酶+携带TET2 重组腺病毒处理为AdTET2 组;低氧+凝血酶+H2O2 处理为H2O2 组,低氧+凝血酶+携带TET2 基因重组腺病毒+H2O2 处理为AdTET2+H2O2 组。 观察细胞超微结构,监测组织型纤溶酶原激活物(tissue plasminogen activator,t-PA)、血栓调节蛋白(thrombomodulin,TM)、血管内皮生长因子(vascular endothelial growth factor,VEGF)、血管细胞黏附分子(vascular cell adhesion molecule,VCAM)、血管性血友病因子(von willebrand factor,vWF)、纤溶酶原激活物抑制剂-1(plasminogen activator inhibitor-1,PAI-1)和活性氧(reactive oxygen species,ROS)、超氧化物歧化酶(superoxide dismutase,SOD)、丙二醛(malondialdehyde,MDA)。

结果

Hypo-C 组较Norm-C 组胞浆内细胞器肿胀和空泡化,细胞膜完整,Norm-M 组和Hypo-M 组细胞膜破裂和细胞质渗漏。 Hypo-M 组t-PA(2.03±0.04)ng/ml、TM(1.04±0.06)ng/ml、SOD 活性(12.97±1.79)U/mg、TET2 mRNA(0.45±0.04)低于Norm-C 组t-PA(3.29±0.25)ng/ml、TM(1.45±0.11)ng/ml、SOD 活性(19.66±2.15)U/mg、TET2 mRNA(1.00±0.07);Hypo-M 组VEGF(435.03±18.27)pg/ml、VCAM(74.14±4.47)ng/ml、vWF(87.22±6.57)ng/ml、PAI-1(12.32±0.28)pg/ml、ROS(81 911.90±3 011.78)、MDA(0.87±0.10)nmol/mg 高于Norm-C 组VEGF(328.55±21.02)pg/ml、VCAM(56.74±3.95)ng/ml、vWF(66.27±4.91)ng/ml、PAI-1(8.07±0.43)pg/ml、ROS(46 424.60±2 040.93)、MDA(0.55±0.06)nmol/mg。 AdTET2 组与模型组或空载体组相比,t-PA、TM、SOD 升高,VEGF、VCAM、vWF、PAI-1、ROS、MDA 降低。 AdTET2+H2O2 组TM、t-PA 高于H2O2 组,VEGF、VCAM、vWF、PAI-1、ROS、MDA 低于H2O2 组。

结论

低氧和凝血酶诱导HUVECs 损伤,TET2 过表达减轻氧化应激,发挥保护作用。

Objective

To investigate the effects and mechanisms of ten-eleven translocation methylcytosine dioxygenase 2 (TET2) on hypoxia-induced injury in human umbilical vein endothelial cells(HUVECs).

Methods

Human umbilical vein endothelial cells (HUVECs) were treated as follows:HUVECs treated with normal saline under normoxia were defined as the Norm-C group; HUVECs treated with thrombin under normoxia were defined as the Norm-M group; HUVECs treated with normal saline under hypoxia were defined as the Hypo-M group; HUVECs treated with hypoxia and thrombin were also defined as the Hypo-M group. Additionally,HUVECs treated with hypoxia,thrombin,and an adenovirus empty vector without TET2 were defined as the empty vector group; HUVECs treated with hypoxia,thrombin,and a recombinant adenovirus carrying the TET2 gene were defined as the AdTET2 group; HUVECs treated with hypoxia,thrombin,and H2O2 were defined as the H2O2 group; HUVECs treated with hypoxia,thrombin,a recombinant adenovirus carrying the TET2 gene,and H2O2 were defined as the AdTET2+H2O2 group. The ultrastructure of the cells was observed,and the levels of tissue plasminogen activator (t-PA),thrombomodulin (TM),vascular endothelial growth factor (VEGF),vascular cell adhesion molecule (VCAM),von Willebrand factor(vWF),plasminogen activator inhibitor-1 (PAI-1),reactive oxygen species (ROS),superoxide dismutase(SOD),and malondialdehyde (MDA) were monitored.

Results

Compared with the Norm-C group,the Hypo-C group exhibited swollen and vacuolated organelles in the cytoplasm,but the cell membranes remained intact.In contrast,the Norm-M and Hypo-M groups showed ruptured cell membranes and cytoplasmic leakage. In the Hypo-M group,the levels of t-PA (2.03±0.04) ng/ml,TM (1.04±0.06)ng/ml,SOD activity (12.97±1.79)U/mg,and TET2 mRNA (0.45±0.04) were lower than those in the Norm-C group t-PA (3.29±0.25)ng/ml,TM (1.45±0.11)ng/ml,SOD activity (19.66±2.15)U/mg,TET2 mRNA (1.00±0.07). Conversely,the levels of VEGF (435.03±18.27) pg/ml,VCAM (74.14±4.47)ng/ml,vWF (87.22±6.57)ng/ml,PAI-1(12.32±0.28)pg/ml,ROS (81 911.90±3 011.78),and MDA (0.87±0.10) nmol/mg were higher in the Hypo-M group than in the Norm-C group VEGF (328.55±21.02)pg/ml,VCAM (56.74±3.95)ng/ml,vWF(66.27±4.91)ng/ml,PAI-1 (8.07±0.43)pg/ml,ROS (46 424.60±2 040.93),MDA(0.55±0.06)nmol/mg.Compared with the model group or the empty vector group,the AdTET2 group showed increased levels of t-PA,TM,and SOD activity,while VEGF,VCAM,vWF,PAI-1,ROS,and MDA were decreased. In the AdTET2+H2O2 group,the levels of TM and t-PA were higher than those in the H2O2 group,while VEGF,VCAM,vWF,PAI-1,ROS,and MDA were lower than those in the H2O2 group.

Conclusion

Hypoxia and thrombin induce injury in HUVECs,while overexpression of TET2 alleviates oxidative stress and exerts a protective effect.

表1 每组HUVECs 细胞因子及氧化应激标志物
图1 HUVECs 中TM、t-PA、PAI-1、VCAM、vWF、VEGF 水平。 图A 为细胞上清液TM 浓度;图B 为细胞上清液t-PA 浓度;图C为细胞上清液PAI-1 浓度;图D 为细胞上清液VCAM 浓度;图E 为细胞上清液vWF 浓度;图F 为细胞上清液VEGF 浓度。 与模型组相比:*P<0.05,**P<0.01,***P<0.001;与AdTET2 组相比:&P<0.05,&&P<0.01,&&&P<0.001;与H2O2 组相比:#P<0.05,##P<0.01,###P<0.001
1
Imiela AM,Mikołajczyk TP,Guzik TJ,et al. Acute pulmonary embolism and immunity in animal models[J]. Arch Immunol Ther Exp (Warsz),2024,72(1):doi:10.2478/aite-2024-0003.
2
Xia YQ,Tang L,Hu Y. Advances in the genetics of venous thromboembolic disease[J]. Zhonghua Xue Ye Xue Za Zhi,2024,45(12):1144-1147.
3
Simonneau G,Dorfmüller P,Guignabert C,et al.Chronic thromboembolic pulmonary hypertension:the magic of pathophysiology[J]. Ann Cardiothorac Surg,2022,11(2):106-119.
4
Zhou C,Zhou Y,Ma W,et al. Revisiting Virchow's triad:exploring the cellular and molecular alterations in cerebral venous congestion[J]. Cell Biosci,2024,14(1):131.
5
Guo J,Wang Z,Wu J,et al. Endothelial SIRT6 is vital to prevent hypertension and associated cardiorenal injury through targeting Nkx3.2-GATA5 signaling[J]. Circ Res,2019,124(10):1448-1461.
6
Ashry NA,Abdelaziz RR,Suddek GM. The potential effect of imatinib against hypercholesterolemia induced atherosclerosis,endothelial dysfunction and hepatic injury in rabbits[J]. Life Sci,2020,243:117275.
7
Chen Q,Li X,Kong L,et al.miR-101-3p induces vascular endothelial cell dysfunction by targeting tet methylcytosine dioxygenase 2[J].Acta Biochim Biophys Sin (Shanghai),2020,52(2):180-191.
8
Schönichen C,Sun S,Middelveld H,et al. Functionally distinct anticoagulant mechanisms of endothelial cells[J]. Thromb Res,2024,244:109208.
9
Ninivaggi M,Swieringa F,Middelveld H,et al. Exercise and hypoxiainduced hypercoagulability is counterbalanced in women in part by decreased platelet reactivity[J]. Thromb Res,2024,234:142-150.
10
Vijay A,Jha PK,Parveen S,et al.Aberrant promoter hypermethylation regulates thrombomodulin in high altitude induced deep vein thrombosis[J]. Thromb Res,2022,215:5-13.
11
Tourn J,Crescence L,Bruzzese L,et al. Cellular and molecular mechanisms leading to air travel-induced thrombosis[J]. Circ Res,2025,136(1):115-134.
12
Shaydakov M E,Diaz J A,Eklöf B,et al. Venous valve hypoxia as a possible mechanism of deep vein thrombosis:a scoping review[J].Int Angiol,2024,43(3):309-322.
13
Liu X,Li Z. The role and mechanism of epigenetics in anticancer drug-induced cardiotoxicity[J]. Basic Res Cardiol,2025,120(1):11-24.
14
Li X,Dong X,Lu W,et al. Integrated analysis of gene expression and methylation data to identify potential biomarkers related to atherosclerosis onset[J]. Oxid Med Cell Longev,2022,2022:5493051.
15
Kumar A,Misra S,Nair P,et al. Epigenetics mechanisms in ischemic stroke:A promising avenue? [J]. J Stroke Cerebrovasc Dis,2021,30(5):105690.
16
He J,Lin M,Zhang X,et al. TET2 is required to suppress mTORC1 signaling through urea cycle with therapeutic potential[J]. Cell Discov,2023,9(1):84.
17
Okashita N,Kuroki S,Maeda R,et al. TET2 catalyzes active DNA demethylation of the Sry promoter and enhances its expression[J].Sci Rep,2019,9(1):13462.
18
Wang Z,Liu W,Wang D,et al. TET2 mutation may be more valuable in predicting thrombosis in ET patients compared to PV patients:A preliminary report[J]. J Clin Med,2022,11(22):6615.
19
Wang J,Uryga AK,Reinhold J,et al. Vascular smooth muscle cell senescence promotes atherosclerosis and features of plaque vulnerability[J]. Circulation,2015,132(20):1909-1919.
20
Zeng J,Tao J,Xia L,et al. Melatonin inhibits vascular endothelial cell pyroptosis by improving mitochondrial function via up-regulation and demethylation of UQCRC1[J]. Biochem Cell Biol,2021,99(3):339-347.
21
Shi Y,Li B,Huang X,et al. Loss of TET2 impairs endothelial angiogenesis via downregulating STAT3 target genes [J]. Cell Biosci,2023,13(1):12.
22
Yang X,Xiang Y,Wang F,et al. Expressions and relationship of Krüppel-like factor 15 and endothelial nitric oxide synthase in experimental deep venous thrombosis[J]. Ann Transl Med,2020,8(17):1090.
23
Qiao X,Cao S,Chen S,et al. Salvianolic acid A alleviates H (2)O (2)-induced endothelial oxidative injury via miR-204-5p[J]. Sci Rep,2024,14(1):11931.
24
Peng J,Tang Z,Ren Z,et al. TET2 Protects against oxLDLInduced HUVEC Dysfunction by Upregulating the CSE/H (2) S System[J]. Front Pharmacol,2017,8:486.
25
Iba T,Helms J,Levi M,et al. Thromboinflammation in acute injury:infections,heatstroke,and trauma[J]. J Thromb Haemost,2024,22(1):7-22.
26
Srivastava S,Kumari B,Garg I,et al. Targeted gene expression study using TaqMan low density array to gain insights into venous thrombo-embolism (VTE) pathogenesis at high altitude[J]. Blood Cells Mol Dis,2020,82:102421.
27
He JZ,Ho JJD,Gingerich S,et al. Enhanced translation of heme oxygenase-2 preserves human endothelial cell viability during hypoxia[J]. J Biol Chem,2010,285(13):9452-9461.
28
Incalza MA,D'Oria R,Natalicchio A,et al. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases [J]. Vascul Pharmacol,2018,100:1-19.
29
Sum H,Brewer AC. Epigenetic modifications as therapeutic targets in atherosclerosis:a focus on DNA methylation and non-coding RNAs[J]. Front Cardiovasc Med,2023,10:1183181.
30
Li A,Tan L,Zhang S,et al. Low shear stress-induced endothelial mesenchymal transformation via the down-regulation of TET2[J].Biochem Biophys Res Commun,2021,545:20-26.
31
Yu Y,Yan R,Chen X,et al. Paeonol suppresses the effect of ox-LDL on mice vascular endothelial cells by regulating miR-338-3p/TET2 axis in atherosclerosis[J]. Mol Cell Biochem,2020,475(1-2):127-135.
32
Rauch PJ,Gopakumar J,Silver AJ,et al. Loss-of-function mutations in Dnmt3a and Tet2 lead to accelerated atherosclerosis and concordant macrophage phenotypes[J]. Nat Cardiovasc Res,2023,2(9):805-818.
33
Gao Q,Shen K,Xiao M. TET2 mutation in acute myeloid leukemia:biology,clinical significance,and therapeutic insights[J]. Clin Epigenetics,2024,16(1):155.
34
Wen H,Liu X,Zhu Z,et al.TET2 is downregulated in early esophageal squamous cell carcinoma and promotes esophageal squamous cell malignant behaviors[J]. Dig Dis Sci,2024,69(7):2462-2476.
35
Hu F,Chen X,Gao J,et al. CircDIP2C ameliorates oxidized lowdensity lipoprotein-induced cell dysfunction by binding to miR-556-5p to induce TET2 in human umbilical vein endothelial cells[J].Vascul Pharmacol,2021,139:106887.
[1] 周圆圆, 周怡, 段亚阳, 张怡卿, 朱峰宇, 张超学. 低强度超声缓解顺铂所致小鼠卵巢损伤的实验研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(12): 1132-1141.
[2] 姚金含, 王伟娜, 张玉泉. 妊娠相关深静脉血栓形成患者的预后研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(04): 367-373.
[3] 王馨悦, 王卓然, 古丽莎. 氧化纳米铈促进氧化应激状态下口腔骨缺损修复的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(01): 62-69.
[4] 李一萱, 李美和, 郑瑾. 肾移植缺血再灌注损伤机制及其对移植肾的影响[J/OL]. 中华移植杂志(电子版), 2025, 19(01): 43-49.
[5] 朱雪晴, 李绍春, 唐健雄, 王瑞芳, 李绍杰. 疝外科手术中静脉血栓栓塞预防及实践的新进展[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(02): 140-143.
[6] 沈柳柳, 周不畏, 王敏, 卢春霞, 邢燕飞. 个体化肺康复及情绪调节对AECOPD并VTE 高危患者生活质量和预后影响分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 971-974.
[7] 吕园园, 高辰旸, 徐永君. 纳米金棒对A549 细胞的毒性效应及其对自噬的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(01): 20-29.
[8] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[9] 李佳曦, 刘子源, 李学民. 二甲双胍对年龄相关性白内障影响的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(04): 252-256.
[10] 陈月阳, 王景景, 王淑莹, 杨以太, 李泽萌, 胡迪, 周蓬勃, 李伟, 任党利, 孙洪涛. 五苓散对缺氧大鼠高原脑水肿的改善作用及机制研究[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(02): 86-93.
[11] 李京, 牛博, 刘晓蓓, 魏新雪, 黄荣. circ-SESN2 沉默靶向调控miRNA-23a-5p/ULK1 在神经细胞氧化应激损伤中的作用机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 263-272.
[12] 于洁, 金小红, 顾艳楣, 王慧, 葛杨杨, 李燕. 癌症相关静脉血栓栓塞症患者疾病体验与需求的质性研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 739-744.
[13] 植艳茹, 李海燕, 张晶晶, 钟亚宁. 基于课题研究型品管圈构建静脉血栓栓塞症防治护理“3E”教学模式[J/OL]. 中华介入放射学电子杂志, 2025, 13(02): 179-183.
[14] 李兰, 莫伟, 王庆, 胡琴, 李琴, 吴雅琴, 罗成林. 医院-社区-家庭一体化管理模式在社区老年人VTE 预防中的应用[J/OL]. 中华介入放射学电子杂志, 2025, 13(01): 88-92.
[15] 庞淇丹, 崔玮, 唐涛, 姜德春, 李深. 检测脑缺血再灌注损伤的探针及技术进展[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(02): 149-154.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?