| 1 |
任成山,王关嵩,钱桂生. 慢性阻塞性肺疾病的成因及其治疗的困惑与希望[J/OL]. 中华肺部疾病杂志(电子版), 2019, 12(2): 127-141.
|
| 2 |
Riley CM, Sciurba FC. Diagnosis and outpatient management of chronic obstructive pulmonary disease: A Review[J]. JAMA, 2019, 321(8): 786-797.
|
| 3 |
Hosseinzadeh AR, Aghajanzadeh M, Lahiji MR, et al. Results of the surgical treatment of pulmonary bleb and bullous disease: A retrospective study[J]. Lung India, 2022, 39(5): 455-459.
|
| 4 |
Clubley E, England RJ, Cullinane C, et al. Ball valve obstruction of a bronchus causing lobar emphysema in a neonate[J]. Pediatr Surg Int, 2007, 23(7): 699-702.
|
| 5 |
Lee YL, Heriyanto DS, Yuliani FS, et al. Eosinophilic inflammation:a key player in COPD pathogenesis and progression[J]. Ann Med, 2024, 56(1): 2408466.
|
| 6 |
Roffel MP, Brandsma CA, Faiz A, et al. The role of miR-320d in regulation of cigarette smoke-induced pro-inflammatory responses in COPD[J]. Arch Bronconeumol, 2025,S0300-2896(25)00229-7.
|
| 7 |
Chandel J, Naura AS. Dynamics of inflammatory and pathological changes induced by single exposure of particulate matter (PM(2.5)) in mice: Potential implications in COPD[J]. Cell Biochem Biophys, 2024, 82(4): 3463-3475.
|
| 8 |
Di Stefano A, Nucera F, Rosani U, et al. Impaired SERPIN-protease balance in the peripheral lungs of stable COPD patients[J]. Int J Mol Sci, 2025, 26(7): 2832.
|
| 9 |
Fischer BM, Pavlisko E, Voynow JA. Pathogenic triad in COPD: oxidative stress, protease-antiprotease imbalance, and inflammation[J]. Int J Chron Obstruct Pulmon Dis, 2011, 6: 413-421.
|
| 10 |
Johnson SR. Untangling the protease web in COPD: Metalloproteinases in the silent zone[J]. Thorax, 2016, 71(2): 105-106.
|
| 11 |
Sastre J, Perez S, Sabater L, et al. Redox signaling in the pancreas in health and disease[J]. Physiol Rev, 2025, 105(2): 593-650.
|
| 12 |
Liang X, Weng J, You Z, et al. Oxidative stress in cancer: From tumor and microenvironment remodeling to therapeutic frontiers[J]. Mol Cancer, 2025, 24(1): 219.
|
| 13 |
Barreiro E, Peinado VI, Galdiz JB, et al. Cigarette smoke-induced oxidative stress: A role in chronic obstructive pulmonary disease skeletal muscle dysfunction[J]. Am J Respir Crit Care Med, 2010, 182(4): 477-488.
|
| 14 |
Kraik K, Tota M, Laska J, et al. The role of transforming growth factor-beta (TGF-beta) in asthma and chronic obstructive pulmonary disease (COPD)[J]. Cells, 2024, 13(15): 1271.
|
| 15 |
Maclay JD, Mcallister DA, Rabinovich R, et al. Systemic elastin degradation in chronic obstructive pulmonary disease[J]. Thorax, 2012, 67(7): 606-612.
|
| 16 |
Ozretic P, Da SFM, Catalano C, et al. Association of NLRP1 coding polymorphism with lung function and serum IL-1beta concentration in patients diagnosed with chronic obstructive pulmonary disease (COPD)[J]. Genes (Basel), 2019, 10(10): 783.
|
| 17 |
Xie XM, Ke R, Zhang YH, et al. Interleukin-6 gene-174G>C polymorphism and chronic obstructive pulmonary disease risk: a meta-analysis[J]. Genet Mol Res, 2015, 14(3): 8516-8525.
|
| 18 |
Hipolito P, Quilala PF, Dimamay M, et al. Tumor necrosis factor alpha 308 G/A genetic polymorphism in patients with chronic obstructive pulmonary disease presenting with hyperactive airways[J]. Biomed Rep, 2024, 21(2): 113.
|
| 19 |
Nedeljkovic I, Lahousse L, Carnero-Montoro E, et al. COPD GWAS variant at 19q13.2 in relation with DNA methylation and gene expression[J]. Hum Mol Genet, 2018, 27(2): 396-405.
|
| 20 |
Fintelmann FJ, Brinkmann JK, Jeck WR, et al. Lung cancers associated with cystic airspaces: Natural history, pathologic correlation, and mutational analysis[J]. J Thorac Imaging, 2017, 32(3): 176-188.
|
| 21 |
Xie Y, Zhang D, Zhao H, et al. Case report: Misdiagnosis of lung carcinoma in patients with shrunken lung cyst after high altitude travel[J]. Cancer Manag Res, 2022, 14: 2373-2377.
|
| 22 |
Gui X, Ding J, Li Y, et al. Lung carcinoma with diffuse cystic lesions misdiagnosed as pulmonary langerhans cell histocytosis: a case report[J]. BMC Pulm Med, 2020, 20(1): 30.
|
| 23 |
Denisov EV, Schegoleva AA, Gervas PA, et al. Premalignant lesions of squamous cell carcinoma of the lung: The molecular make-up and factors affecting their progression[J]. Lung Cancer, 2019, 135: 21-28.
|
| 24 |
Byrne SC, Hunsaker AR, Hammer MM. Risk of malignancy in cystic lung lesions in a lung cancer CT screening program[J]. Radiology, 2025, 315(2): e243166.
|
| 25 |
Eguchi R, Wakabayashi I. HDGF enhances VEGF dependent angiogenesis and FGF 2 is a VEGF independent angiogenic factor in non small cell lung cancer[J]. Oncol Rep, 2020, 44(1): 14-28.
|
| 26 |
Donnem T, Andersen S, Al-Saad S, et al. Prognostic impact of angiogenic markers in non-small-cell lung cancer is related to tumor size[J]. Clin Lung Cancer, 2011, 12(2): 106-115.
|
| 27 |
Socinski MA. Multitargeted receptor tyrosine kinase inhibition: an antiangiogenic strategy in non-small cell lung cancer[J]. Cancer Treat Rev, 2011, 37(8): 611-617.
|
| 28 |
Jiang X, Wang J, Deng X, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape[J]. Mol Cancer, 2019, 18(1): 10.
|
| 29 |
Kim HR, Park HJ, Son J, et al. Tumor microenvironment dictates regulatory T cell phenotype: Upregulated immune checkpoints reinforce suppressive function[J]. J Immunother Cancer, 2019, 7(1): 339.
|
| 30 |
He S, Zheng L, Qi C. Myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment and their targeting in cancer therapy[J]. Mol Cancer, 2025, 24(1): 5.
|
| 31 |
Shima T, Shimoda M, Shigenobu T, et al. Infiltration of tumor-associated macrophages is involved in tumor programmed death-ligand 1 expression in early lung adenocarcinoma[J]. Cancer Sci, 2020, 111(2): 727-738.
|
| 32 |
Takamori S, Yamaguchi M, Taguchi K, et al. Uncommon features of surgically resected ALK-positive cavitary lung adenocarcinoma: a case report[J]. Surg Case Rep, 2017, 3(1): 46.
|
| 33 |
Huo Z, Wu H, Li S, et al. Molecular genetic studies on EGFR, KRAS, BRAF, ALK, PIK3CA, PDGFRA, and DDR2 in primary pulmonary adenoid cystic carcinoma[J]. Diagn Pathol, 2015, 10: 161.
|
| 34 |
Iwama E, Okamoto I, Yabuuchi H, et al. Characteristics of smoking patients with lung cancer with emphysematous bullae[J]. J Thorac Oncol, 2016, 11(9): 1586-1590.
|
| 35 |
Ma Z, Wang S, Zhu H, et al. Comprehensive investigation of lung cancer associated with cystic airspaces: predictive value of morphology[J]. Eur J Cardiothorac Surg, 2022, 62(5): ezac297.
|
| 36 |
Shen Y, Xu X, Zhang Y, et al. Lung cancers associated with cystic airspaces: CT features and pathologic correlation[J]. Lung Cancer, 2019, 135: 110-115.
|
| 37 |
林丹丹,吴晓青,刘婷,等. 2082例行肺部低剂量高分辨螺旋CT检查的健康体检者结果分析[J/OL]. 中华肺部疾病杂志(电子版), 2020, 13(5): 687-689.
|
| 38 |
Shen J, Gao C, Lou X, et al. The association between emphysema detected on computed tomography and increased risk of lung cancer: a systematic review and meta-analysis[J]. Quant Imaging Med Surg, 2025, 15(3): 2193-2208.
|
| 39 |
Dai J, Liu M, Swensen S J, et al. Regional emphysema score predicting overall survival, quality of life, and pulmonary function recovery in early-stage lung cancer patients[J]. J Thorac Oncol, 2017, 12(5): 824-832.
|
| 40 |
De-Torres JP, Marin JM, Casanova C, et al. Identification of COPD patients at high risk for lung cancer mortality using the COPD-LUCSS-DLCO[J]. Chest, 2016, 149(4): 936-942.
|
| 41 |
Fintelmann FJ, Brinkmann JK, Jeck WR, et al. Lung cancers associated with cystic airspaces: Natural history, pathologic correlation, and mutational analysis[J]. J Thorac Imaging, 2017, 32(3): 176-188.
|
| 42 |
Wang B, Shen C, Liu D, et al. A Comprehensive review of advances in molecular mechanisms and targeted therapies for the specific type of cystic lung cancer[J]. Onco Targets Ther, 2025, 18: 211-224.
|
| 43 |
吴漫,徐兴祥. 慢性阻塞性肺疾病合并肺癌的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2019, 12(5): 646-649.
|
| 44 |
Caramori G, Adcock IM, Casolari P, et al. Unbalanced oxidant-induced DNA damage and repair in COPD: a link towards lung cancer[J]. Thorax, 2011, 66(6): 521-527.
|
| 45 |
Feng X, Matsuo K, Zhang T, et al. MicroRNA profiling and target genes related to metastasis of salivary adenoid cystic carcinoma[J]. Anticancer Res, 2017, 37(7): 3473-3481.
|
| 46 |
Forder A, Zhuang R, Souza V, et al. Mechanisms contributing to the comorbidity of COPD and lung cancer[J]. Int J Mol Sci, 2023, 24(3): 2859.
|
| 47 |
Detterbeck FC, Kumbasar U, Li AX, et al. Lung cancer with air lucency: a systematic review and clinical management guide[J]. J Thorac Dis, 2023, 15(2): 731-746.
|
| 48 |
Liu W, Du M, Wan H, et al. Serpin family A member 1 is an oncogene in glioma and its translation is enhanced by NAD(P)H quinone dehydrogenase 1 through RNA-binding activity[J]. Open Med (Wars), 2022, 17(1): 1645-1654.
|