切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2021, Vol. 14 ›› Issue (05) : 677 -680. doi: 10.3877/cma.j.issn.1674-6902.2021.05.039

综述

非编码RNA调控巨噬细胞炎症反应在ALI/ARDS中的研究进展
许发琼1, 贺斌峰1, 黄朝旺1, 胡明冬2,()   
  1. 1. 400037 重庆,陆军(第三)军医大学第二附属医院呼吸与危重症医学中心
    2. 400037 重庆,陆军(第三)军医大学第二附属医院呼吸与危重症医学中心;400037 重庆,陆军(第三)军医大学第二附属医院老年与特勤医学科
  • 收稿日期:2021-03-19 出版日期:2021-10-25
  • 通信作者: 胡明冬
  • 基金资助:
    国家自然科学基金面上项目(81873421); 高校基础研究课题(2020-2017-075)

Research progress of non-coding RNA regulation of macrophage inflammatory response in ALI/ARDS

Faqiong Xu1, Binfeng He1, Chaowang Huang1   

  • Received:2021-03-19 Published:2021-10-25
引用本文:

许发琼, 贺斌峰, 黄朝旺, 胡明冬. 非编码RNA调控巨噬细胞炎症反应在ALI/ARDS中的研究进展[J]. 中华肺部疾病杂志(电子版), 2021, 14(05): 677-680.

Faqiong Xu, Binfeng He, Chaowang Huang. Research progress of non-coding RNA regulation of macrophage inflammatory response in ALI/ARDS[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2021, 14(05): 677-680.

1
马李杰,李王平,金发光. 急性肺损伤/急性呼吸窘迫综合征发病机制的研究进展[J/CD]. 中华肺部疾病杂志(电子版), 2013, 6(1): 65-68.
2
刘涛,任成山. 炎症介质在急性肺损伤/急性呼吸窘迫综合征发病机制中的作用[J/CD]. 中华肺部疾病杂志(电子版), 2013, 6(3): 265-269.
3
施卉,任成山. 急性肺损伤/急性呼吸窘迫综合征基础及临床研究进展[J/CD]. 中华肺部疾病杂志(电子版), 2013, 6(4): 350-355.
4
Kopf M, Schneider C, Nobs S. The development and function of lung-resident macrophages and dendritic cells[J]. Nat Immunol, 2015, 16(1): 36-44.
5
Huang X, Xiu H, Zhang S, et al. The Role of Macrophages in the Pathogenesis of ALI/ARDS[J]. Mediators Inflamm, 2018, 2018: 1264913.
6
Yang S, Yuan HQ, Hao YM, et al. Macrophage polarization in atherosclerosis[J]. Clin Chim Acta, 2019, 501: 142-146.
7
Wang L, Wu T, Yan S, et al. M1-polarized alveolar macrophages are crucial in a mouse model of transfusion-related acute lung injury[J]. Transfusion, 2020, 60(2): 303-316.
8
Xu Y, Meng C, Liu G, et al. Classically activated macrophages protect against lipopolysaccharide-induced acute lung injury by expressing amphiregulin in mice[J]. Anesthesiology, 2016, 124(5): 1086-1099.
9
Liu M, Chen Y, Wang S, et al. α-Ketoglutarate modulates macrophage polarization through regulation of PPARγ transcription and mTORC1/p70S6K pathway to ameliorate ALI/ARDS[J]. Shock, 2020, 53(1): 103-113.
10
D′Alessio F, Craig J, Singer B, et al. Enhanced resolution of experimental ARDS through IL-4-mediated lung macrophage reprogramming[J]. Am J Physiol Lung Cell Mol Physiol, 2016, 310(8): L733-746.
11
Liu X, Jiang S, Zhang Q, et al. Tim-3 regulates tregs′ability to resolve the inflammation and proliferation of acute lung injury by modulating macrophages polarization[J]. Shock, 2018, 50(4): 455-464.
12
王东旭,王虎,周瀛,等. 巨噬细胞极化在炎性疾病中作用的研究进展[J]. 中国医药2017, 12(9): 1427-1430.
13
易红,张政. lncRNA与miRNA相互作用对疾病的影响[J]. 基础医学与临床2016, 36(2): 267-271.
14
Suo T, Chen G, Huang Y, et al. miRNA-1246 suppresses acute lung injury-induced inflammation and apoptosis via the NF-κB and Wnt/β-catenin signal pathways[J]. Shock, 2018, 50: 455-464.
15
Jiang KF, Yang J, Guo S, et al. Peripheral circulating exosome-mediated delivery of miR-155 as a novel mechanism for acute lung inflammation[J]. Mol Ther, 2019, 27(10): 1758-1771.
16
Yang J, Chen Y, Jiang KF, et al. MicroRNA-106a provides negative feedback regulation in lipopolysaccharide-induced inflammation by targeting TLR4[J]. Int J Biol Sci, 2019, 15(11): 2308-2319.
17
Zhu MJ, Li Y, Sun KY. MicroRNA-182-5p inhibits inflammation in LPS-treated RAW264.7 cells by mediating the TLR4/NF-κB signaling pathway[J]. Int J Clin Exp Pathol, 2018, 11(12): 5725-5734.
18
Fu L, Zhu P, Qi S, et al. MicroRNA-92a antagonism attenuates lipopolysaccharide (LPS)-induced pulmonary inflammation and injury in mice through suppressing the PTEN/AKT/NF-κB signaling pathway[J]. Biomed Pharmacother, 2018, 107: 703-711.
19
Zhu WD, Xu J, Zhang M, et al. MicroRNA-21 inhibits lipopolysaccharide-induced acute lung injury by targeting nuclear factor-κB[J]. Exp Ther Med, 2018, 16(6): 4616-4622.
20
Khan MJ, Singh P, Dohare R, et al. Inhibition of miRNA-34a Promotes M2 macrophage polarization and improves LPS-induced lung injury by targeting Klf4[J]. Genes, 2020, 11(966): 1-18.
21
He RX, Li Y, Zhou L, et al. miR-146b overexpression ameliorates lipopolysaccharide-induced acute lung injury in vivo and in vitro[J]. J Cell Biochem, 2019, 120(3): 2929-2939.
22
张秀军,么春艳,陶晓东,等. miR-28-5p靶向Nrf2调控LPS诱导的急性肺损伤机制研究[J]. 浙江中西医结合杂志2020, 29(12): 963-967.
23
Yan J, Yang F, Wang DY, et al. MicroRNA-217 modulates inflammation, oxidative stress, and lung injury in septic mice via SIRT1[J]. Free Radic Res, 2021, 55(1): 1-10.
24
Ying YG, Mao Y, Yao M. NLRP3 inflammasome activation by microRNA-495 promoter methylation may contribute to the progression of acute lung injury[J]. Mol Ther Nucleic Acids, 2019, 18: 801-814.
25
Zhang D, Lee H, Wang X, et al. A potential role of microvesicle-containing miR-223/142 in lung inflammation[J]. Thorax, 2019, 74(9): 865-874.
26
江伟伟,李文放. miRNA-142-3p对肺泡巨噬细胞炎症过程的负向调控及其机制[J]. 第二军医大学学报2017, 38(3): 339-344.
27
Hu G, Gong A, Wang Y, et al. LincRNA-Cox2 promotes late inflammatory gene transcription in macrophages through modulating SWI/SNF-mediated chromatin remodeling[J]. J Immunol, 2016, 196(6): 2799-2808.
28
Xie YX, Wang M, Tian JJ, et al. Long non-coding RNA expressed in macrophage co-varies with the inflammatory phenotype during macrophage development and polarization[J]. J Cell Mol Med, 2019, 23(10): 6530-6542.
29
Wang J, Shen YC, Chen ZN, et al. Microarray profiling of lung long non-coding RNAs and mRNAs in lipopolysaccharide-induced acute lung injury mouse model[J]. Biosci Rep, 2019, 39(4): BSR20181634.
30
Zhao G, Su Z, Song D, et al. The long noncoding RNA MALAT1 regulates the lipopolysaccharide-induced inflammatory response through its interaction with NF-κB[J]. FEBS letters, 2016, 590(17): 2884-2895.
31
Dai LL, Zhang GJ, Cheng Z, et al. Knockdown of LncRNA MALAT1 contributes to the suppression of inflammatory responses by up-regulating miR-146a in LPS-induced acute lung injury[J]. Connect Tissue Res, 2018, 59(6): 581-592.
32
Jia YH, Li ZZ, Cai WX, et al. SIRT1 regulates inflammation response of macrophages in sepsis mediated by long noncoding RNA[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(3): 784-792.
33
戴巍,骆德强,胡世林,等. lncRNA10913在脂多糖诱导肺巨噬细胞炎症反应中的作用研究[J]. 江西医药2020, 55(4): 394-397.
34
黄舒颖,张诚,黄自坤,等. lncRNA NEAT1对脂多糖所致肺泡巨噬细胞NF-κB活化的影响[J]. 江西医药2020, 55(3): 259-262.
35
Zhu JY, Bai JJ, Wang SJ, et al. Down-regulation of long non-coding RNA SNHG14 protects against acute lung injury induced by lipopolysaccharide through microRNA-34c-3p-dependent inhibition of WISP1[J]. Respir Res, 2019, 20(1): 233.
36
Qiu N, Xu XM, He YY. LncRNA TUG1 alleviates sepsis-induced acute lung injury by targeting miR-34b-5p/GAB1[J]. BMC Pulm Med, 2020, 20(1): 49.
37
Chen Z, Dong WH, Qiu ZM, et al. The monocyte-derived exosomal CLMAT3 activates the CtBP2-p300-NF-κB transcriptional complex to induce proinflammatory cytokines in ALI[J]. Mol Ther Nucleic Acids, 2020, 21: 1100-1110.
38
Amaresh Chandra Panda. Circular RNAs Act as miRNA Sponges[J]. Adv Exp Med Biol, 2018, 1087: 67-79.
39
Zhang YY, Zhang Y, Li XQ, et al. Microarray analysis of circular RNA expression patterns in polarized macrophages[J]. Int J Mol Med, 2017, 39(2): 373-379.
40
Bao XW, Zhang QQ, Liu N, et al. Characteristics of circular RNA expression of pulmonary macrophages in mice with sepsis-induced acute lung injury[J]. J Cell Mol Med, 2019, 23(10): 7111-7115.
[1] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[2] 陈大敏, 曹晓刚, 曹能琦. 肥胖对胃癌患者手术治疗效果的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 651-653.
[3] 贾成朋, 王代宏, 陈华, 孙备. 可切除性胰腺癌预后术前预测模型的建立及应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 566-570.
[4] 伍学成, 李远伟, 袁武雄, 王建松, 石泳中, 卢强, 李卓, 陈佳, 刘哲, 滕伊漓, 高智勇. 炎症介质谱联合降钙素原在尿源性脓毒血症中的诊断价值[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 476-480.
[5] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[6] 熊欢庆, 李玉娟, 陈键, 刘刚, 李志超, 金发光. 丹参酮IIA及苦参碱组方对脂多糖致小鼠急性肺损伤的协同保护作用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 455-459.
[7] 刘小燕, 龙乾发, 席俊秀, 杜明皓, 黄晓欢. 细胞外囊泡介导的胶质细胞交互作用对神经炎症的调节意义及研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 235-241.
[8] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[9] 许磊, 孙杰, 陈先志, 张家泉, 李旺勇, 冯其柱, 王琦. 血液净化治疗在高血脂性重症胰腺炎中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 464-468.
[10] 苗软昕, 乔晞. Toll样受体在脓毒症性急性肾损伤中的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 210-214.
[11] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[12] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[13] 朱风尚, 舍玲, 丁永年, 杨长青. 警惕炎症性肠病与少见肠道疾病的鉴别诊断[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 273-276.
[14] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
[15] 刘天姿, 王宝军. Toll样受体4在阿尔茨海默病中的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 404-409.
阅读次数
全文


摘要