切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2017, Vol. 10 ›› Issue (01) : 25 -28. doi: 10.3877/cma.j.issn.1674-6902.2017.01.006

所属专题: 文献

论著

一种改良大鼠骨髓间充质干细胞培养方法
王博荣1, 鲁曦1, 张敏龙1, 李聪聪1, 李鹏程1, 王雅宁2, 金发光1,()   
  1. 1. 710038 西安,第四军医大学唐都医院呼吸内科
    2. 721000 宝鸡,宝鸡市第二人民医院呼吸内科
  • 收稿日期:2016-03-29 出版日期:2017-02-25
  • 通信作者: 金发光
  • 基金资助:
    国家自然科学基金资助项目(81570067)

Modified culture and identification of rat bone marrow mesenchymal stem cells

Borong Wang1, Xi Lu1, Minlong Zhang1, Congcong Li1, Pengcheng Li1, Yaning Wang2, Faguang Jin1,()   

  1. 1. Department of Respiratory Medicine, Tangdu Hospital, Fourth Military Medical University, Xi′an 710038, China
    2. Department of Respiratory Medicine, the Second People′s Hospital of Baoji City, Baoji721000, China
  • Received:2016-03-29 Published:2017-02-25
  • Corresponding author: Faguang Jin
  • About author:
    Corresponding author: Jin Faguang, Email:
引用本文:

王博荣, 鲁曦, 张敏龙, 李聪聪, 李鹏程, 王雅宁, 金发光. 一种改良大鼠骨髓间充质干细胞培养方法[J]. 中华肺部疾病杂志(电子版), 2017, 10(01): 25-28.

Borong Wang, Xi Lu, Minlong Zhang, Congcong Li, Pengcheng Li, Yaning Wang, Faguang Jin. Modified culture and identification of rat bone marrow mesenchymal stem cells[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2017, 10(01): 25-28.

目的

建立大鼠骨髓间充质干细胞(BMSCs)的分离、改良培养、纯化方法,并进行细胞形态学观察、表面标志物鉴定及多向分化能力检测。

方法

通过改良全骨髓贴壁法对4周龄SD雄性大鼠脱颈处死,无菌条件下分离出骨髓进行原代培养、消化传代培养及纯化。对BMSCs进行形态学观察,收获第四代BMSCs进行流式细胞仪检测其细胞表面标记物CD90、CD29、CD34、CD45的表达率及向成脂方向诱导分化。

结果

BMSCs的原代培养形态学观察可见骨髓细胞接种于培养皿后,细胞呈圆型,大小不一,悬浮于培养液中。24 h后部分细胞开始贴壁,呈圆形、梭形或多角形。通过换液去除未贴壁的杂质细胞,可见短梭形、星形细胞分散贴壁生长,四五天可见放射状排列的细胞集落,伸出长短不一、粗细不均的突起,梭形细胞为主,胞浆丰富,胞核大、核仁清晰。7~8 d细胞呈集落生长,融合80%~90%,呈漩涡状,同向排列,9~10 d细胞排列紧密,逐渐融合成片。传代培养可见消化传代后,传代细胞24 h完全贴壁生长。细胞形态均一,呈梭形生长,细胞生长旺盛。四至五天可传代1次。可稳定连续传代7代以上,细胞形态及生长速度未见明显变化。BMSCs表面标记物的表达通过流式细胞仪检测结果显示,培养的第4代大鼠BMSCs均一表达CD90,CD29,阳性率分别为96.9%,96.6%;而CD34,CD45,呈阴性,阳性率分别为0.395%,7.56%。BMSCs加入成脂诱导剂后18 d,诱导而成的脂肪细胞累积脂质,脂滴变大,合并呈串珠状,经油红O染色呈鲜红色。

结论

与传统全骨髓贴壁法相比,改良后的全骨髓贴壁法操作步骤简单,降低离心对细胞的损害,减少了污染机会,节省经费,且分离的BMSCs细胞活性高,可大量分离、纯化、扩增,所获细胞具有间充质干细胞的一般生物学特性,经诱导培养后具有多向分化潜能。可为组织器官缺损性疾病、恶性肿瘤等的治疗和组织工程提供充足的种子细胞来源,具有重要的现实意义。

Objective

To establish the rat bone marrow mesenchymal stem cells(BMSCs) were isolated and cultured, purified and modified optimization method in vitro, to observe cell morphology, and to assess surface markers and differentiation capacity detection.

Mthods

The bone marrows of 4-week-old, male Sprague Dawley rats were used to obtain mMSCs. Rats were euthanized via cervical dislocation. After 72 hours, the medium was replaced and fresh medium was provided every 3 days. BMSCs were identified via flow cytometry, multi-directional differentiation capacity, and morphology.

Results

Primary culture: Bone marrow cells were seeded in round culture dishes of different sizes and suspended in culture medium. After 24 hours, the part of the cells adhered to the culture dish were visible as round, fusiform, or polygonal. After removal of the non-adherent cells by media replacement, the adherent cells were found to be short, spindle or star shaped, and scattered on the plastic surface. After 4 or 5 days, radially arranged cell colonies were visible, which differed in length and thickness. Spindle cells comprised the main colonies, possessing abundant cytoplasm and a large nucleus. After a week, the cells showed colony growth, were fused at approximately 80%-90%, and were reminiscent of a whirlpool, all with the same directionality. After 10 days, the cells were arranged in close proximity to one another, gradually integrating into sheet form. Culture passage: After digestion and passage, the cells adhered to the plastic surface within 24 hours. The cells were homogeneous, spindle-shaped, and displayed strong cell growth. Each passaging was performed after 4 or 5 days of growth. Cell morphology and growth rate did not significantly differ after 10 generations of stable and continuous passage. The results of flow cytometry revealed a positivity rate of CD90 expression of 96.9%, and of 96.6% for CD29. Thus, the negativity rate of CD45 was 7.56%, and that of CD34 was 0.395% in fourth generation rat mMSCs. The mMSCs were added into an adipocytes-inducing agent, where they were cultured for 18 days, during which time, lipid and lipid droplet accumulation was induced with a string of beads. The oil red O staining was bright red.

Conclusions

Without centrifugation of whole bone marrow adherent culture method has the advantages of simple operation, is not easy to pollute, highly active cell, bulk separation, purification and amplification of BMSCs, cells with a mesenchymal stem cell biological characteristics. After cultured with multilineage differentiation potential.

图1 骨髓间充质干细胞形态学观察(×20)
图2 骨髓间充质干细胞形态学观察(×200)
图3 大鼠骨髓间充质干细胞表面标志物的表达
图4 大鼠骨髓间充质干细胞成脂诱导18 d油红O染色(×200)
1
Gao Y, Zhu Z, Zhao Y, et al. Multiline age potential research of bovine amniotic fluid mesenchymal stem cells[J]. Int J Mol Sci, 2014,15(3): 3698-3710.
2
中华人民共和国科学技术部. 关于善待实验动物的指导性意见. 2006-09-30.
3
Bühring HJ, Treml S, Cerabona F, et al. Phenotypic characterization of distinct human bone marrow-derived MSC subsets[J]. Ann NY Acad Sci, 2009, 1176: 124-134.
4
常颖,齐欣,卜丽莎. 成人骨髓间充质干细胞体外多向分化潜能特性的研究[J]. 中国危重病急救医学,2005, 17(2): 95-97.
5
贾秀娟,孙晓娟,徐丽丽. 特定微环境条件下人骨髓间充质干细胞定向诱导分化为脂肪细胞[J]. 中国组织工程研究与临床康复,2008, 12(34): 6635-6638.
6
Fridenshteǐn AIa, Piatetski -Shapiro II, Petrakova KV. Osteogenesis in transplants of bone marrow cells[J]. Arkh Anat Gistol Embriol, 1969, 56(3): 3-11.
7
Campagnoli C, Roberts IA, Kumar S, et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow[J]. Blood, 2001, 98(8): 2396-2402.
8
Lee OK, Kuo TK, Chen WM, et al. Isolation of multipotent mesenchymal stem cells from umbilical cord blood[J]. Blood, 2004, 103(5): 1669-1675.
9
Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow[J]. Nature, 2002, 418(6893): 41-49.
10
De Ugarte DA, Alfonso Z, Zuk PA, et al. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow[J]. Immunol Lett, 2003, 89(2-3): 267-270.
11
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement[J]. Cytotherapy, 2006, 8(4): 315-317.
12
Fernández Vallone VB, Romaniuk MA, Choi H, et al. Mesenchymal stem cells and their use in therapy: what has been achieved?[J]. Differentiation, 2013, 85(1-2): 1-10.
13
De Schauwer C, Meyer E, Van de Walle GR, et al. Markers of stemness in equine mesenchymal stem cells: a plea for uniformity[J]. Theriogenology, 2011, 75(8): 1431-1443.
14
Zemel′ko VI, Grinchuk TM, Domnina AP, et al. [Multipotent mesenchymal stem cells of desquamated endometrium: isolation, characterization and use as feeder layer for maintenance of human embryonic stem cell lines][J]. Tsitologiia, 2011, 53(12): 919-929.
15
Zhang N, Dietrich MA, Lopez MJ. Canine intra-articular multipotent stromal cells (MSC) from adipose tissue have the highest in vitro expansion rates, multipotentiality, and MSC immunophenotypes[J]. Vet Surg, 2013, 42(2): 137-146.
16
Sousa BR, Parreira RC, Fonseca EA, et al. Human adult stem cells from diverse origins: an overview from multiparametric immunophenotyping to clinical applications[J]. Cytometry A, 2014, 85(1): 43-77.
17
Hwang SH, Park SH, Choi J, et al. Age-related characteristics of multipotent human nasal inferior turbinate-derived mesenchymal stem cells[J]. PLoS One, 2013, 8(9): e74330.
18
Branch MJ, Hashmani K, Dhillon P, et al. Mesenchymal stem cells in the human corneal limbal stroma[J]. Invest Ophthalmol Vis Sci, 2012 Aug 3; 53(9): 5109-5116.
19
De Cesaris V, Grolli S, Bresciani C, et al. Isolation, proliferation and characterization of endometrial canine stem cells[J]. Reprod Domest Anim, 2016, doi: 10.1111/rda.12885.
20
Phinney DG, Sensebé L. Mesenchymal stromal cells: misconceptions and evolving concepts[J]. Cytotherapy, 2013, 15(2): 140-5. doi: 10.1016/j.jcyt.2012.11.005.
[1] 何羽. 腔镜微创手术治疗分化型甲状腺癌的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 456-458.
[2] 浦凌宵, 诸俊浩, 陶亮, 王峰, 王萌, 管文贤. 低黏附性胃癌PET/CT影像学特征和脂代谢相关机制研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 255-260.
[3] 黄汇, 朱信强. 131I治疗45岁以下分化型甲状腺癌的疗效及影响因素[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 627-630.
[4] 郑泽坤, 刘卓恒, 邹浩, 胡会元, 李妲, 吴巍. 扩大根治性手术切除复发性巨大腹膜后去分化脂肪肉瘤1例[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 588-590.
[5] 邓瑞锋, 程璐, 周宇林, 刘远灵, 江文聪, 江敏耀, 江福能, 习明. TGF-β1诱导骨髓间充质干细胞外泌体分泌miR-424-3p促进前列腺癌细胞增殖及转移[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 82-89.
[6] 杨攀, 黄晓寒, 邓才霞, 周利航, 周向东, 罗虎. SMARCA4缺失的胸部未分化肿瘤临床特征及预后分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 529-534.
[7] 郝春艳, 吉泽, 成苏杭, 李文思, 王丹. 血清miR-155联合sCD14水平判断慢性阻塞性肺疾病预后的临床分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 87-90.
[8] 李彦浇, 梁雷, 金钫, 王智伟. 银杏内酯B通过调控miR-24-3p对人牙周膜干细胞增殖、成骨分化的影响[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 229-235.
[9] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[10] 景水力, 王娟, 刘晔, 周亨, 熊威, 叶青松. 间充质干细胞在脊髓损伤中的应用及研究进展[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 113-121.
[11] 刘娟丽, 马四清, 乌仁塔娜. 髓源性抑制细胞在脓毒症中的研究进展[J]. 中华重症医学电子杂志, 2024, 10(03): 271-278.
[12] 苑乐添, 王艺霖, 沈子剑, 闫呈新. 血清GDF15、sB7-H1联合多层螺旋CT灌注成像技术对胃癌患者淋巴结转移的诊断价值[J]. 中华消化病与影像杂志(电子版), 2024, 14(01): 62-66.
[13] 吴凤芸, 滕鑫, 刘连娟. 高帧频超声造影与增强磁共振对不同直径原发性高分化肝细胞癌的诊断价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 404-408.
[14] 赵建忠, 朱名超, 朱娅, 孙莉, 卢恩昌, 叶海辉. 人体寄生虫形态学鉴别诊断的教学方法探索[J]. 中华诊断学电子杂志, 2024, 12(03): 212-216.
[15] 林一鑫, 董晶, 贾建文, 黄菊梅, 武军元, 王双坤, 柳云鹏, 汪阳. 基于人工智能分析颈内动脉颅外段迂曲特征及对称性的应用性评价[J]. 中华脑血管病杂志(电子版), 2024, 18(03): 202-209.
阅读次数
全文


摘要