1 |
钱桂生. 肺癌不同病理类型发病率的变化情况及原因[J/CD]. 中华肺部疾病杂志(电子版), 2011, 4(1): 1-6.
|
2 |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016[J]. CA Cancer J Clin, 2016, 66(1): 7-30.
|
3 |
Spiro SG, Tanner NT, Silvestri GA, et al. Lung cancer: progress in diagnosis, staging and therapy[J]. Respirology, 2010, 15(1): 44-50.
|
4 |
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132.
|
5 |
Johnson DH, Schiller JH, Bunn PA, Jr. Recent clinical advances in lung cancer management[J]. J Clin Oncol, 2014, 32(10): 973-982.
|
6 |
Langer CJ, Besse B, Gualberto A, et al. The evolving role of histology in the management of advanced non-small-cell lung cancer[J]. J Clin Oncol, 2010, 28(36): 5311-5320.
|
7 |
Davidson MR, Gazdar AF, Clarke BE. The pivotal role of pathology in the management of lung cancer[J]. J Thorac Dis, 2013, 5( Suppl 5): S463-S478.
|
8 |
Chen Z, Fillmore CM, Hammerman PS, et al. Non-small-cell lung cancers: a heterogeneous set of diseases[J]. Nat Rev Cancer, 2014, 14(8): 535-546.
|
9 |
Longley DB, Johnston PG. Molecular mechanisms of drug resistance[J]. J Pathol, 2005, 205(2): 275-292.
|
10 |
Swanton C. Intratumor heterogeneity: evolution through space and time[J]. Cancer Res, 2012, 72(19): 4875-4882.
|
11 |
Suda K, Murakami I, Katayama T, et al. Reciprocal and complementary role of MET amplification and EGFR T790M mutation in acquired resistance to kinase inhibitors in lung cancer[J]. Clin Cancer Res, 2010, 16(22): 5489-5498.
|
12 |
Wang S, Cang S, Liu D. Third-generation inhibitors targeting EGFR T790M mutation in advanced non-small cell lung cancer[J]. J Hematol Oncol, 2016, 9: 34.
|
13 |
Katayama R, Shaw AT, Khan TM, et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers[J]. Sci Transl Med, 2012, 4(120): 120ra17.
|
14 |
Turke AB, Zejnullahu K, Wu YL, et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC [J]. Cancer Cell, 2010, 17(1): 77-88.
|
15 |
Corcoran RB, Dias-Santagata D, Bergethon K, et al. BRAF gene amplification can promote acquired resistance to MEK inhibitors in cancer cells harboring the BRAF V600E mutation[J]. Sci Signal, 2010, 3(149): ra84.
|
16 |
Wagle N, Emery C, Berger MF, et al. Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling[J]. J Clin Oncol, 2011, 29(22): 3085-96.
|
17 |
Farmer H, Mccabe N, Lord CJ, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy [J]. Nature, 2005, 434(7035): 917-921.
|
18 |
Kris MG, Johnson BE, Kwiatkowski DJ, et al. Identification of driver mutations in tumor specimens from 1,000 patients with lung adenocarcinoma: The NCI′s LCMC[J]. J Clin Oncol, 2011, 29(18 suppl): CRA7506.
|
19 |
Pillai RN, Ramalingam SS. Advances in the diagnosis and treatment of non-small cell lung cancer[J]. Mol Cancer Ther, 2014, 13(3): 557-564.
|
20 |
Nguyen KS, Kobayashi S, Costa DB. Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancers dependent on the epidermal growth factor receptor pathway[J]. Clin Lung Cancer, 2009, 10(4): 281-289.
|
21 |
Pallis A, Briasoulis E, Linardou H, et al. Mechanisms of resistance to epidermal growth factor receptor tyrosine kinase inhibitors in patients with advanced non-small-cell lung cancer: clinical and molecular considerations[J]. Curr Med Chem, 2011, 18(11): 1613-28.
|
22 |
Suda K, Mizuuchi H, Maehara Y, et al. Acquired resistance mechanisms to tyrosine kinase inhibitors in lung cancer with activating epidermal growth factor receptor mutation-diversity, ductility, and destiny [J]. Cancer Metastasis Rev, 2012, 31(3-4): 807-814.
|
23 |
Becker K, Xu Y. Management of tyrosine kinase inhibitor resistance in lung cancer with EGFR mutation[J]. World J Clin Oncol, 2014, 5(4): 560-567.
|
24 |
Nguyen L V, Vanner R, Dirks P, et al. Cancer stem cells: an evolving concept[J]. Nat Rev Cancer, 2012, 12(2): 133-143.
|
25 |
Suresh R, Ali S, Ahmad A, et al. The Role of Cancer Stem Cells in Recurrent and Drug-Resistant Lung Cancer [J]. Adv Exp Med Biol, 2016, 890: 57-74.
|
26 |
Trumpp A, Wiestler OD. Mechanisms of Disease: cancer stem cells-targeting the evil twin[J]. Nat Clin Pract Oncol, 2008, 5(6): 337-347.
|
27 |
Liu YP, Yang CJ, Huang MS, et al. Cisplatin selects for multidrug-resistant CD133+ cells in lung adenocarcinoma by activating Notch signaling[J]. Cancer Res, 2013, 73(1): 406-416.
|
28 |
Azzoli C G, Baker S, Jr., Temin S, et al. American Society of Clinical Oncology Clinical Practice Guideline update on chemotherapy for stage Ⅳ non-small-cell lung cancer[J]. Zhongguo Fei Ai Za Zhi, 2010, 13(3): 171-189.
|
29 |
Bertolini G, Roz L, Perego P, et al. Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment[J]. Proc Natl Acad Sci U S A, 2009, 106(38): 16281-16286.
|
30 |
Patel P, Chen EI. Cancer stem cells, tumor dormancy, and metastasis[J]. Front Endocrinol (Lausanne), 2012, 3: 125.
|
31 |
Kim EY, Lee SS, Shin JH, et al. Anticancer effect of arsenic trioxide on cholangiocarcinoma: in vitro experiments and in vivo xenograft mouse model [J]. Clin Exp Med, 2014, 14(2): 215-224.
|
32 |
Bao S, Wu Q, Mclendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response[J]. Nature, 2006, 444(7120): 756-760.
|
33 |
Postow MA, Callahan MK, Wolchok JD. Immune Checkpoint Blockade in Cancer Therapy[J]. J Clin Oncol, 2015, 33(17): 1974-1982.
|
34 |
Pennell NA. Understanding the Rationale for Immunotherapy in Non-Small Cell Lung Cancer[J]. Semin Oncol, 2015, 42 (Suppl 2): S3-S10.
|
35 |
Calles A, Liao X, Sholl LM, et al. Expression of PD-1 and Its Ligands, PD-L1 and PD-L2, in Smokers and Never Smokers with KRAS-Mutant Lung Cancer[J]. J Thorac Oncol, 2015, 10(12): 1726-1735.
|
36 |
Ma W, Gilligan BM, Yuan J, et al. Current status and perspectives in translational biomarker research for PD-1/PD-L1 immune checkpoint blockade therapy[J]. J Hematol Oncol, 2016, 9(1): 47.
|
37 |
Akbay EA, Koyama S, Carretero J, et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors[J]. Cancer Discov, 2013, 3(12): 1355-1363.
|
38 |
Janne PA, Yang JC, Kim DW, et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer[J]. N Engl J Med, 2015, 372(18): 1689-1699.
|
39 |
Lin PY, Yu SL, Yang PC. MicroRNA in lung cancer[J]. Br J Cancer, 2010, 103(8): 1144-1148.
|
40 |
Papadimitrakopoulou V. Development of PI3K/AKT/mTOR pathway inhibitors and their application in personalized therapy for non-small-cell lung cancer[J]. J Thorac Oncol, 2012, 7(8): 1315-1326.
|
41 |
Shen H, Zhu F, Liu J, et al. Alteration in Mir-21/PTEN expression modulates gefitinib resistance in non-small cell lung cancer [J]. PLoS One, 2014, 9(7): e103305.
|
42 |
Garofalo M, Romano G, Di Leva G, et al. EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers [J]. Nature medicine, 2011, 18(1): 74-82.
|
43 |
Zhen Q, Liu J, Gao L, et al. MicroRNA-200a Targets EGFR and c-Met to Inhibit Migration, Invasion, and Gefitinib Resistance in Non-Small Cell Lung Cancer[J]. Cytogenet Genome Res, 2015, 146(1): 1-8.
|
44 |
Ge X, Zheng L, Huang M, et al. MicroRNA expression profiles associated with acquired gefitinib-resistance in human lung adenocarcinoma cells[J]. Mol Med Rep, 2015, 11(1): 333-340.
|
45 |
Engelman JA, Zejnullahu K, Mitsudomi T, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling[J]. Science, 2007, 316(5827): 1039-1043.
|
46 |
Mercer TR, Dinger ME, Sunkin SM, et al. Specific expression of long noncoding RNAs in the mouse brain[J]. Proc Natl Acad Sci U S A, 2008, 105(2): 716-721.
|
47 |
Yang Y, Li H, Hou S, et al. The noncoding RNA expression profile and the effect of lncRNA AK126698 on cisplatin resistance in non-small-cell lung cancer cell [J]. PLoS One, 2013, 8(5): e65309.
|
48 |
Liu J, Wan L, Lu K, et al. The Long Noncoding RNA MEG3 Contributes to Cisplatin Resistance of Human Lung Adenocarcinoma[J]. PLoS One, 2015, 10(5): e0114586.
|
49 |
Niu Y, Ma F, Huang W, et al. Long non-coding RNA TUG1 is involved in cell growth and chemoresistance of small cell lung cancer by regulating LIMK2b via EZH2[J]. Molecular cancer, 2017, 16(1): 5.
|
50 |
候学智,冯喜英,关巍,等. 慢性阻塞性肺疾病合并肺癌的临床特点研究[J/CD]. 中华肺部疾病杂志(电子版), 2015, 8(2): 220-223.
|