切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2024, Vol. 17 ›› Issue (04) : 512 -518. doi: 10.3877/cma.j.issn.1674-6902.2024.04.002

论著

过表达小GTP酶Rab32抑制非小细胞肺癌细胞侵袭性生长
赵蒙蒙1, 黄洁1, 余荣环1, 王葆青2,()   
  1. 1. 200031 上海,上海市徐汇区中心医院,复旦大学附属中山医院徐汇医院呼吸与危重症医学科
    2. 200031 上海,上海市徐汇区中心医院,复旦大学附属中山医院徐汇医院呼吸与危重症医学科;200032 上海,复旦大学附属中山医院呼吸与危重症医学科
  • 收稿日期:2024-06-13 出版日期:2024-08-25
  • 通信作者: 王葆青
  • 基金资助:
    上海市徐汇区卫生系统高峰学科建设项目(SHXHZDXK202312)

Overexpression of the small GTPase Rab32 inhibits the invasive growth of non-small cell lung cancer cells

Mengmeng Zhao1, Jie Huang1, Ronghuan Yu1, Baoqing Wang2,()   

  1. 1. Department of Respiratory Medicine, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200031, China
    2. Department of Respiratory Medicine, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200031, China; Department Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
  • Received:2024-06-13 Published:2024-08-25
  • Corresponding author: Baoqing Wang
引用本文:

赵蒙蒙, 黄洁, 余荣环, 王葆青. 过表达小GTP酶Rab32抑制非小细胞肺癌细胞侵袭性生长[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 512-518.

Mengmeng Zhao, Jie Huang, Ronghuan Yu, Baoqing Wang. Overexpression of the small GTPase Rab32 inhibits the invasive growth of non-small cell lung cancer cells[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2024, 17(04): 512-518.

目的

分析Rab32对非小细胞肺癌(non-small cell lung cancer, NSCLC)细胞增殖、迁移及侵袭的影响及作用机制;

方法

通过生物信息学判断NSCLC中Rab32的表达;用qRT-PCR和Western blot检测NSCLC细胞中Rab32 mRNA和蛋白表达水平;应用Rab32过表达慢病毒感染A549和H1299细胞,构建Rab32稳转A549和H1299细胞株为观察组,空载体慢病毒感染A549和H1299细胞后构建的为对照组;利用CCK-8和集落形成实验判断Rab32对NSCLC细胞影响增殖能力;通过划痕和Transwell实验检测Rab32对A549和H1299细胞迁移和侵袭能力的影响;利用Western blot检测不同组细胞中EMT标志物(E-cadherin、N-cadherin和Vimentin)蛋白的表达水平变化。

结果

通过生物信息学分析显示,肺腺癌(Lung adenocarcinoma, LUAD)和肺鳞癌(lung squamous cell carcinoma, LUSC)中Rab32的mRNA表达较对照组显著降低(P<0.05);qRT-PCR及Western blot结果表明A549、H1299和HCC827中Rab32 mRNA和蛋白表达水平显著低于正常人支气管上皮细胞Beas-2B,其中A549和H1299细胞中Rab32 mRNA和蛋白较Beas-2B下降显著。A549、H1299细胞中,观察组的Rab32 mRNA和蛋白表达水平显著高于空载体对照组(P<0.05)。CCK-8和集落形成实验结果表明观察组的细胞增殖和克隆能力较对照组显著下降(P<0.05);划痕和Transwell实验结果提示观察组细胞的迁移和侵袭能力明显下降(P<0.05);Western blot结果显示观察组细胞的上皮表型标志物E-cadherin蛋白表达水平显著高于对照组,而间皮表型标志物N-cadherin和Vimentin表达较对照组明显升高(P<0.05)。

结论

Rab32抑制NSCLC细胞的增殖、迁移和侵袭,可作为潜在临床治疗NSCLC患者新途径。

Objective

To investigate the role and novel mechanism of Rab32 on the proliferation, migration, and invasion of non-small cell lung cancer (NSCLC) cells.

Methods

The expression of Rab32 in NSCLC was assessed using bioinformatics. The mRNA and protein expression levels of Rab32 in NSCLC cells were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis. Stable Rab32-overexpressing A549 and H1299 cell lines were constructed using a lentivirus system, with the overexpression group serving as the observation group. The effects of Rab32 on the proliferation of NSCLC cells were evaluated by CCK-8 and colony formation assays. The impact of Rab32 on the migration and invasion capabilities of A549 and H1299 cells was examined using scratch and Transwell assays. The expression levels of epithelial-mesenchymal transition (EMT) markers (E-cadherin, N-cadherin, and Vimentin) in different groups of cells were measured by Western blot.

Results

Bioinformatics analysis indicated that the mRNA expression of Rab32 was significantly reduced in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) compared to the control group(P<0.05). qRT-PCR and Western blot results revealed that the mRNA and protein expression levels of Rab32 in A549, H1299, and HCC827 were significantly lower than those in normal human bronchial epithelial cells (Beas-2B), with more pronounced decreases in A549 and H1299 cells. In A549 and H1299 cells, the mRNA and protein expression levels of Rab32 in the observation group were significantly higher than those in the empty vector control group (P<0.05). The CCK-8 and colony formation assay results showed that the cell proliferation and cloning capacity of the observation group were significantly reduced compared to the control group (P<0.05). The scratch and Transwell assay results suggested a marked decrease in the migration and invasion capabilities of the observation group cells (P<0.05). Western blot analysis showed that the protein expression level of the epithelial phenotype marker E-cadherin in the observation group cells was significantly higher than that in the control group, while the expression of mesenchymal phenotype markers N-cadherin and Vimentin was markedly increased compared to the control group (P<0.05).

Conclusion

Rab32 inhibits the proliferation, migration, and invasion of NSCLC cells and may serve as a potential new avenue for the clinical treatment of NSCLC patients.

图1 Rab32在NSCLC中表达情况。注:A:基于UCSC Xena数据库分析Rab32在LUAD和LUSC类型NSCLC及对照组中表达水平;B:qPCR检测Rab32 mRNA在正常起到上皮细胞Beas-2B和NSCLC细胞HCC827、H1299、A549中的表达水平;C: Western blot检测Beas-2B、HCC827、H1299和A549细胞中Rab32蛋白的表达水平。***:P<0.001
图2 获得稳定过表达Rab32的A549和H1299细胞。注:A:Western blot分别检测A549观察组和A549对照组、H1299观察组和H1299对照组中Rab32蛋白的表达水平;B:qPCR分别检测A549观察组和、A549对照组(左侧图)、H1299观察组和H1299对照组中Rab32 mRNA的表达水平。***:P<0.001
图3 Rab32显著抑制A549、H1299细胞增殖能力。注:A:CCK-8分别检测A549观察组和A549对照组(左侧图)、H1299观察组和H1299对照组(右侧图)的细胞增殖情况;B:克隆形成实验判断A549观察组和A549对照组、H1299观察组和H1299对照组克隆能力。左侧图为代表性图片,右侧图为克隆形成数目的统计分析。***:P<0.001
图4 Rab32抑制A549、H1299细胞迁移及侵袭。注:A:划痕实验A549观察组和A549对照组、H1299观察组和H1299对照组的细胞迁移情况。左图代表性图片,右图细胞迁移率统计分析;B:Transwell实验A549观察组和A549对照组、H1299观察组和H1299对照组细胞侵袭情况。左侧图为代表性图片,右侧图为细胞侵袭能力半定量的统计分析。***:P<0.001
图5 Rab32抑制对A549、H1299细胞迁移及侵袭。注:A:Western blot检测A549观察组和A549对照组、H1299观察组和H1299对照组中E-cadherin(E-cad)、N-cadherin(N-cad)、Vimentin(Vim)的蛋白表达水平;B:对A图的半定量统计分析。***, P<0.001
1
Bray F, Laversanne M, Sung H. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263.
2
Herbst Roy S, Morgensztern Daniel, Boshoff Chris. The biology and management of non-small cell lung cancer[J]. Nature, 2018, 553 (7689): 446-454.
3
Drizyte-Miller Kristina, Chen Jing, Schott Micah B, et al. The small GTPase Rab32 resides on lysosomes to regulate mTORC1 signaling[J]. J Cell Sci, 2020, 133(11): jcs236661.
4
Chen Pin, Lu Yanbing, He Binfeng, et al. Rab32 promotes glioblastoma migration and invasion via regulation of ERK/Drp1-mediated mitochondrial fission[J]. Cell Death Dis, 2023, 14(3): 198.
5
He Zheng, Tian Meng, Fu Xuan. Reduced expression of miR-30c-5p promotes hepatocellular carcinoma progression by targeting RAB32[J]. Mol Ther Nucleic Acids, 2021, 26: 603-612.
6
Oksuz Z, Serin MS, Kaplan E, et al. Serum microRNAs; miR-30c-5p, miR-223-3p, miR-302c-3p and miR-17-5p could be used as novel non-invasive biomarkers for HCV-positive cirrhosis and hepatocellular carcinoma[J]. Mol Biol Rep, 201542(3): 713-720.
7
Srivastava Saumya, Mohanty Atish, Singhal Sharad, et al. Chemokines and NSCLC: Emerging role in prognosis, heterogeneity, and therapeutics[J]. Semin Cancer Biol, 2022, 86(Pt 2): 233-246.
8
Wilmes Stephan, Kümmel Daniel. Insights into the role of the membranes in Rab GTPase regulation[J]. Curr Opin Cell Biol, 2023, 83: 102177.
9
Nguyen Mai KL, Jose Jaimy, Wahba Mohamed. Linking late endosomal cholesterol with cancer progression and anticancer drug resistance[J]. Int J Mol Sci, 2022, 23(13): 7206.
10
Kuo I-Ying, Hsieh Chih-Hsiung, Chang Chih-Peng, et al. Recent advances in conventional and unconventional vesicular secretion pathways in the tumor microenvironment[J]. J Biomed Sci, 2022, 29(1): 56.
11
Krishnan Priya D Gopal, Golden Emily, Pavlos Nathan J, et al. Rab GTPases: emerging oncogenes and tumor suppressive regulators for the editing of survival pathways in cancer[J]. Cancers (Basel), 2020, 12(2): 259.
12
Nishizawa Aya, Maruta Yuto, Fukuda Mitsunori. Rab32/38-dependent and-independent transport of tyrosinase to melanosomes in B16-F1 melanoma cells[J]. Int J Mol Sci, 2022, 23(22): 14144.
13
Zeng Cuiling, Zhong Li, Liu Wenqiang. Targeting the lysosomal degradation of Rab22a-NeoF1 fusion protein for osteosarcoma lung metastasis[J]. Adv Sci(Weinh), 2023, 10(5): e2205483.
14
Liu Huiying, Zhou Yuxia, Hong Wanjin, et al. Rab26 suppresses migration and invasion of breast cancer cells through mediating autophagic degradation of phosphorylated Src[J]. Cell Death Dis, 2021, 12(4): 284.
15
陈 伟,李 华,唐心蔚,等. Rab26对小细胞肺癌H446细胞增殖和迁移的影响[J/CD]. 中华肺部疾病杂志(电子版), 2019, 12(1): 43-48.
16
Chang Yu-Chan, Li Chien-Hsiu, Chen Chi-Long, et al. Overexpression of synaptic vesicle protein Rab GTPase 3C promotes vesicular exocytosis and drug resistance in colorectal cancer cells[J]. Mol Oncol, 2023, 17(3): 422-444.
17
Herrera-Cruz Maria Sol, Yap Megan C., Tahbaz Nasser, et al. Rab32 uses its effector reticulon 3L to trigger autophagic degradation of mitochondria-associated membrane (MAM) proteins[J]. Biol Direct, 2021, 16: 22.
18
Malyla Vamshikrishna, Paudel Keshav Raj, De Rubis Gabriele, et al. Extracellular vesicles released from cancer cells promote tumorigenesis by inducing epithelial to mesenchymal transition via beta-catenin signaling[J]. Int J Mol Sci, 2023, 24(4): 3500.
19
Yu Fengqiang, Liang Mingqiang, Huang Yu, et al. Hypoxic tumor-derived exosomal miR-31-5p promotes lung adenocarcinoma metastasis by negatively regulating SATB2-reversed EMT and activating MEK/ERK signaling[J]. J Exp Clin Cancer Res, 2021, 40(1): 179.
20
Guerra Flora, Paiano Aurora, Gasparre Giuseppe, et al. Modulation of RAB7A protein expression determines resistance to cisplatin through late endocytic pathway impairment and extracellular vesicular secretion[J]. Cancers (Basel), 2019, 11(1): 52.
21
Lee Hyun-Wook, Jose Cynthia C, Cuddapah Suresh. Epithelial-mesenchymal transition: Insights into nickel-induced lung diseases[J]. Semin Cancer Biol, 2021, 11(76): 99-109.
22
Liao Bing, Wang Jialing, Luo Hongliang. LINK-A: unveiling its functional role and clinical significance in human tumors[J]. Front Cell Dev Biol, 2024, 12: 1354726.
23
Yin Hang, Chen Lin, Zhang Haiyang, et al. M6A RNA methylation-mediated RMRP stability renders proliferation and progression of non-small cell lung cancer through regulating TGFBR1/SMAD2/SMAD3 pathway[J]. Cell Death Differ, 2023, 30(3): 605-617.
24
Wang Weijia, Liu Wenjun, Yuan Yong, et al. Targeting CSC-related transcription factors by E3 ubiquitin ligases for cancer therapy[J]. Semin Cancer Biol, 2022, 87: 84-97.
25
张小彬,陆云飞,桂小龙,等. Rab25基因下调snail表达抑制人乳腺癌MDA-MB-231细胞上皮-间充质转化能力的研究[J]. 中华内分泌外科杂志2023, 17(2): 166-169.
26
Moghbeli Meysam. PI3K/AKT pathway as a pivotal regulator of epithelial-mesenchymal transition in lung tumor cells[J]. Cancer Cell Int, 2024, 24(1): 165.
27
Samart Parinya, Palliyage Gayathri Heenatigala, Luanpitpong Sudjit,et al. Musashi-2 in cancer-associated fibroblasts promotes non-small cell lung cancer metastasis through paracrine IL-6-driven epithelial-mesenchymal transition[J]. Cell Biosci, 2023, 13 (1): 205.
28
张声林,蔡 浩,戚利坤,等. 下调RAB3C减低上皮间质转化抑制非小细胞肺癌细胞的侵袭和转移[J]. 现代肿瘤医学2020, 11(28): 1825-1828.
29
Zhang Yan, Zhou Min, Li Kun. MicroRNA-30 inhibits the growth of human ovarian cancer cells by suppressing RAB32 expression[J]. Int J Immunopathol Pharmacol, 2022, 36: 20587384211058642.
30
Shen Libing, Shi Qili, Wang Wenyuan. Double agents: genes with both oncogenic and tumor-suppressor functions[J]. Oncogenesis, 2018, 7(3): 25.
[1] 黄福, 王黔, 金相任, 唐云川. VEGFR2、miR-27a-5p在胃癌组织中的表达与临床病理参数及预后的关系研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 558-561.
[2] 陈旭, 牛凯, 孙建国. 放疗联合免疫治疗对驱动基因阴性NSCLC的困惑分析及应对策略[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 341-348.
[3] 杨静, 附舰, 康艳霞. 血浆ctDNA T790M突变和总代谢肿瘤体积对晚期EGFR突变NSCLC患者TKIs治疗及预后意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 379-384.
[4] 赵海燕, 靳海涛, 孔莺, 何瑞远. 血浆NGS-ctDNA对EGFR-TKIs治疗晚期NSCLC患者的预后意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 385-391.
[5] 白丽丽, 江榆, 黄亮亮, 白莹, 张敏. 作业疗法在非小细胞肺癌患者术后康复中应用分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 411-415.
[6] 李静静, 许金花, 吴国峰, 任亚俊, 张骞云. 伏美替尼一线治疗EGFR突变晚期NSCLC脑转移的临床分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 426-429.
[7] 尹炳驿, 张楚楚, 刘艺, 林洪生. 益气清金汤加味治疗晚期非小细胞肺癌的临床分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 462-465.
[8] 罗孝平, 封敏, 黄川, 唐茜, 蒋艳, 胡莉丽. 渐进式抗阻训练干预在非小细胞肺癌中的临床应用[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 472-474.
[9] 曾聿理, 雷发容, 肖慧, 邱德亮, 谢静, 吴寻. 氯普鲁卡因通过调控circRNA-ZKSCAN1表达抑制肝癌Huh-7细胞体外生长和转移的研究[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 220-228.
[10] 李晶, 潘侠, 周芳, 汪晶, 洪佳. 普鲁卡因通过上调lncRNA DGCR5抑制胃癌细胞增殖、迁移和侵袭[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 151-158.
[11] 李博, 马秀岩, 孙杰. lncRNA TINCR对滋养层HTR-8/SVneo细胞生物学行为的影响及其机制[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 167-172.
[12] 杨兴业, 彭旭云, 曾倩, 梁伟铖, 肖翠翠, 郑俊, 姚嘉. LMO7通过靶向铁死亡促进肝细胞癌生长[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 370-376.
[13] 李婛, 凌国源, 江山, 陈晓菊, 郭晓云. 非小细胞肺癌软脑膜转移通过Ommaya囊注射与腰椎穿刺术给药方式疗效的比较[J]. 中华临床医师杂志(电子版), 2024, 18(02): 128-132.
[14] 张迅夫, 马金山, 蒋云龙, 加纳提·托勒恒, 侯昌剑, 萨伍提·斯拉吉丁. GATA3在非小细胞肺癌组织中的表达及临床病理意义[J]. 中华胸部外科电子杂志, 2024, 11(03): 175-179.
[15] 李子健, 王锐, 钟云鹏, 张迪轩, 梁韵娟, 杨超, 何建行, 李树本. 自体肺移植术在胸部恶性肿瘤中的临床应用[J]. 中华胸部外科电子杂志, 2024, 11(03): 193-200.
阅读次数
全文


摘要