1 |
方源扬,刘国强,黄显聪,等. 景东县2004-2013年肺结核防治的卫生经济学分析[J/CD]. 中华肺部疾病杂志(电子版), 2016, 9(1):36-40.
|
2 |
Raviglione M, Sulis G. Tuberculosis 2015: Burden, Challenges and Strategy for Control and Elimination[J]. Infect Dis Rep, 2016, 8(2):6570.
|
3 |
Moliva JI, Turner J, Torrelles JB. Prospects in Mycobacterium bovis Bacille Calmette et Guerin (BCG) vaccine diversity and delivery: why does BCG fail to protect against tuberculosis?[J]. Vaccine, 2015, 33(39):5035-5041.
|
4 |
Lu M, Xia ZY, Bao L. Enhancement of antimycobacterial Th1-cell responses by a Mycobacterium bovis BCG prime-protein boost vaccination strategy[J]. Cell Immunol, 2013, 285(1-2):111-117.
|
5 |
Brodin P, Rosenkrands I, Andersen P, et al. ESAT-6 proteins: protective antigens and virulence factors?[J]. Trends Microbiol, 2004, 12(11):500-508.
|
6 |
Mohanty S, Dal Molin M, Ganguli G, et al. Mycobacterium tuberculosis EsxO (Rv2346c) promotes bacillary survival by inducing oxidative stress mediated genomic instability in macrophages[J]. Tuberculosis (Edinb), 2016, 96:44-57.
|
7 |
Jones GJ, Hewinson RG, Vordermeier HM. Screening of predicted secreted antigens from Mycobacterium bovis identifies potential novel differential diagnostic reagents[J]. Clin Vaccine Immunol, 2010, 17(9):1344-1348.
|
8 |
Hossain MM, Norazmi MN. Pattern recognition receptors and cytokines in Mycobacterium tuberculosis infection-the double-edged sword?[J]. Biomed Res Int, 2013, 2013:179174.
|
9 |
Carmona J, Cruz A, Moreira-Teixeira L, et al. Mycobacterium tuberculosis Strains Are Differentially Recognized by TLRs with an Impact on the Immune Response[J]. PLoS One, 2013, 8(6):e67277.
|
10 |
Hwang SA, Actor JK. Lactoferrin modulation of BCG-infected dendritic cell functions[J]. Int Immunol, 2009, 21(10):1185-1197.
|
11 |
Hussain BK, Mukhopadhyay S. Macrophage takeover and the host-bacilli interplay during tuberculosis[J]. Future Microbiol, 2015, 10(5):853-872.
|
12 |
Zuniga J, Torres-Garcia D, Santos-Mendoza T, et al. Cellular and humoral mechanisms involved in the control of tuberculosis[J]. Clin Dev Immunol, 2012, 2012:193923.
|
13 |
Dube A, Reynolds JL, Law WC, et al. Multimodal nanoparticles that provide immunomodulation and intracellular drug delivery for infectious diseases[J]. Nanomedicine, 2014, 10(4):831-838.
|
14 |
Zhao W, Zhou X, Lu Y, et al. Mycobacterium bovis ornithine carbamoyltransferase, MB1684, induces proinflammatory cytokine gene expression by activating NF-kappa B in macrophages[J]. DNA Cell Biol, 2014, 33(5):311-319.
|
15 |
Fallahi-Sichani M, Kirschner DE, Linderman JJ. NF-kappaB Signaling Dynamics Play a Key Role in Infection Control in Tuberculosis[J]. Front Physiol, 2012, 3:170.
|
16 |
Deng W, Li W, Zeng J, et al. Mycobacterium tuberculosis PPE family protein Rv1808 manipulates cytokines profile via co-activation of MAPK and NF-kappaB signaling pathways[J]. Cell Physiol Biochem, 2014, 33(2):273-288.
|
17 |
Parveen N, Varman R, Nair S, et al. Endocytosis of Mycobacterium tuberculosis heat shock protein 60 is required to induce interleukin-10 production in macrophages[J]. J Biol Chem, 2013, 288(34):24956-24971.
|
18 |
Bansal K, Sinha AY, Ghorpade DS, et al. Src homology 3-interacting domain of Rv1917c of Mycobacterium tuberculosis induces selective maturation of human dendritic cells by regulating PI3K-MAPK-NF-kappaB signaling and drives Th2 immune responses[J]. J Biol Chem, 2010, 285(47):36511-36522.
|
19 |
Zhao Q, Li W, Chen T, et al. Mycobacterium tuberculosis serine protease Rv3668c can manipulate the host-pathogen interaction via Erk-NF-κB axis-mediated cytokine differential expression[J]. J Interferon Cytokine Res, 2014, 34(9):686-698.
|
20 |
Futosi K, Fodor S, Mócsai A. Reprint of Neutrophil cell surface receptors and their intracellular signal transduction pathways[J]. Int Immunopharmacol, 2013, 17(4):1185-1197.
|
21 |
Yu X, Zeng J, Xie J. Navigating through the maze of TLR2 mediated signaling network for better mycobacterium infection control[J]. Biochimie, 2014, 102:1-8.
|