切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2017, Vol. 10 ›› Issue (06) : 655 -661. doi: 10.3877/cma.j.issn.1674-6902.2017.06.005

所属专题: 文献

论著

重组蛋白Rv2346c抑制巨噬细胞对结核分枝杆菌的免疫灭活效应
姚静1, 邵燕2, 杜兴冉3, 冯旰珠1,()   
  1. 1. 210011 南京,南京医科大学第二附属医院呼吸科
    2. 210009 江苏省疾病预防控制中心
    3. 210011 南京,南京医科大学第二附属医院感染科
  • 收稿日期:2017-07-26 出版日期:2017-12-20
  • 通信作者: 冯旰珠
  • 基金资助:
    国家自然科学基金资助项目(81470209)

Recombinant protein Rv2346c inhibits the immunological response of macrophage against Mycobacterium tuberculosis

Jing Yao1, Yan Shao2, Xingran Du3, Ganzhu Feng1,()   

  1. 1. Department of respiration, the second affiliated hospital of Nanjing medical university, Nanjing 210011, China
    2. Jiangsu provincial center for disease prevention and control, Nanjing 210009, China
    3. Department of infectious disease, the second affiliated hospital of Nanjing medical university, Nanjing 210011, China
  • Received:2017-07-26 Published:2017-12-20
  • Corresponding author: Ganzhu Feng
  • About author:
    Corresponding author: Feng Ganzhu, Email:
引用本文:

姚静, 邵燕, 杜兴冉, 冯旰珠. 重组蛋白Rv2346c抑制巨噬细胞对结核分枝杆菌的免疫灭活效应[J]. 中华肺部疾病杂志(电子版), 2017, 10(06): 655-661.

Jing Yao, Yan Shao, Xingran Du, Ganzhu Feng. Recombinant protein Rv2346c inhibits the immunological response of macrophage against Mycobacterium tuberculosis[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2017, 10(06): 655-661.

目的

探讨重组蛋白Rv2346c对卡介苗(BCG)感染鼠巨噬细胞(RAW264.7)后的免疫效应的影响及其机制。

方法

通过DNA合成、基因扩增、载体构建、诱导表达、纯化等过程制备重组蛋白Rv2346c;利用Cell Counting Kit-8 (CCK8)方法检测RAW264.7增殖水平;采用菌落形成试验评估BCG生长情况;运用ELISA方法检测BCG和RAW264.7共培养上清中的肿瘤坏死因子-α (TNF-α)、白细胞介素-6 (IL)-6的浓度;采取Western blot方法检测RAW264.7细胞中核转录因子κB(NF-κB)p65的表达水平。

结果

DNA测序及Western blot检测证实成功制备重组蛋白Rv2346c;BCG可以抑制RAW264.7细胞增殖(P<0.05),而RAW264.7细胞对BCG有灭活作用(P<0.05);重组蛋白Rv2346c可以增强BCG对RAW264.7细胞增殖的抑制作用(P<0.05),并降低RAW264.7对BCG的灭活效应(P<0.05);Rv2346c还可以抑制RAW264.7分泌TNF-α和IL-6(P<0.05),并抑制NF-κB p65的表达(P<0.05)。

结论

重组蛋白Rv2346c可以抑制小鼠巨噬细胞RAW264.7对BCG的免疫灭活效应,该作用可能与抑制细胞因子分泌和NF-κB p65活化有关,具体机制值得进一步深入探讨。

Objective

To investigate the effect of recombinant protein Rv2346c on murine macrophage-induced immunological response on Bacillus Calmette-Guerin (BCG) and the molecular mechanism related.

Methods

DNA synthesis, gene amplification, vector construction, induced expression and protein purification were used to synthesize recombinant protein Rv2346c. Cell Counting Kit-8 (CCK8) kit was applied to tested the proliferation of RAW264.7. Colony formation unit was observed to estimate the growth of BCG. Enzyme-linked immuno sorbent assay (ELISA) was utilized to detect tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 in co-culture supernatant. Western blot was conducted to measure the expression of NF-κB (nuclear transcription factor-kappa B) p65. T test was applied to compare the means of two independent groups and P<0.05 was considered statistically significant.

Results

Recombinant protein Rv2346c was verified by DNA sequencing and Western blot. BCG inhibited the proliferation of RAW264.7 (P<0.05 ) while RAW264.7 inactivated BCG (P<0.05 ). Recombinant protein Rv2346c enhanced the BCG-induced inhibition on the proliferation of RAW264.7 (P<0.05 ) and reduced RAW264.7-medicated immunological killing effect against BGG (P<0.05 ). Rv2346c also suppressed the secretion of TNF-α and IL-6 by RAW264.7 (P<0.05 )and accelerated the protein expression of NF-κB p65 (P<0.05 ).

Conclusion

Recombinant protein Rv2346c could reduce macrophage-medicated immunological killing effect on BCG, which could be associated with the reduced secretion of cytokines and the suppression of NF-κB p65 expression. The exact mechanisms remain to be further explored.

图1 重组表达的Rv2346c基因测序结果
图2 SDS-PAGE分析;注:泳道1: BSA (2.00 μg),泳道2:重组蛋白Rv2346c (1.65 μg);箭头指示重组蛋白Rv2346c条带
图3 Western Blot分析;注:泳道3:重组蛋白Rv2346c;箭头指示重组蛋白Rv2346c条带
图4 BCG对RAW264.7增殖的影响;注:*与对照组相比,P<0.05;#直线两端之间两组比较,P<0.05
图5 BCG和Rv2346c共同作用对RAW264.7增殖的影响;注:*P<0.05,与相同培养时间下的对照组相比;#P<0.05,与相同培养时间下的BCG + Rv2346c (50 pg/ml)组相比;+,P<0.05,与相同培养时间下的BCG+Rv2346c (100 pg/ml)组相比;§P<0.05,与相同培养时间下的BCG + Rv2346c (500 pg/ml)组相比
图6 Rv2346c影响BCG与巨噬细胞共培养后形成的菌落数量
表1 Rv2346c影响巨噬细胞对BCG的免疫抑制作用
表2 BCG与RAW264.7共培养上清中TNF-α和IL-6水平
图7 RAW264.7中NF-κB p65的表达
表3 BCG与RAW264.7共培养后细胞内NF-κB蛋白表达水平
1
方源扬,刘国强,黄显聪,等. 景东县2004-2013年肺结核防治的卫生经济学分析[J/CD]. 中华肺部疾病杂志(电子版), 2016, 9(1):36-40.
2
Raviglione M, Sulis G. Tuberculosis 2015: Burden, Challenges and Strategy for Control and Elimination[J]. Infect Dis Rep, 2016, 8(2):6570.
3
Moliva JI, Turner J, Torrelles JB. Prospects in Mycobacterium bovis Bacille Calmette et Guerin (BCG) vaccine diversity and delivery: why does BCG fail to protect against tuberculosis?[J]. Vaccine, 2015, 33(39):5035-5041.
4
Lu M, Xia ZY, Bao L. Enhancement of antimycobacterial Th1-cell responses by a Mycobacterium bovis BCG prime-protein boost vaccination strategy[J]. Cell Immunol, 2013, 285(1-2):111-117.
5
Brodin P, Rosenkrands I, Andersen P, et al. ESAT-6 proteins: protective antigens and virulence factors?[J]. Trends Microbiol, 2004, 12(11):500-508.
6
Mohanty S, Dal Molin M, Ganguli G, et al. Mycobacterium tuberculosis EsxO (Rv2346c) promotes bacillary survival by inducing oxidative stress mediated genomic instability in macrophages[J]. Tuberculosis (Edinb), 2016, 96:44-57.
7
Jones GJ, Hewinson RG, Vordermeier HM. Screening of predicted secreted antigens from Mycobacterium bovis identifies potential novel differential diagnostic reagents[J]. Clin Vaccine Immunol, 2010, 17(9):1344-1348.
8
Hossain MM, Norazmi MN. Pattern recognition receptors and cytokines in Mycobacterium tuberculosis infection-the double-edged sword?[J]. Biomed Res Int, 2013, 2013:179174.
9
Carmona J, Cruz A, Moreira-Teixeira L, et al. Mycobacterium tuberculosis Strains Are Differentially Recognized by TLRs with an Impact on the Immune Response[J]. PLoS One, 2013, 8(6):e67277.
10
Hwang SA, Actor JK. Lactoferrin modulation of BCG-infected dendritic cell functions[J]. Int Immunol, 2009, 21(10):1185-1197.
11
Hussain BK, Mukhopadhyay S. Macrophage takeover and the host-bacilli interplay during tuberculosis[J]. Future Microbiol, 2015, 10(5):853-872.
12
Zuniga J, Torres-Garcia D, Santos-Mendoza T, et al. Cellular and humoral mechanisms involved in the control of tuberculosis[J]. Clin Dev Immunol, 2012, 2012:193923.
13
Dube A, Reynolds JL, Law WC, et al. Multimodal nanoparticles that provide immunomodulation and intracellular drug delivery for infectious diseases[J]. Nanomedicine, 2014, 10(4):831-838.
14
Zhao W, Zhou X, Lu Y, et al. Mycobacterium bovis ornithine carbamoyltransferase, MB1684, induces proinflammatory cytokine gene expression by activating NF-kappa B in macrophages[J]. DNA Cell Biol, 2014, 33(5):311-319.
15
Fallahi-Sichani M, Kirschner DE, Linderman JJ. NF-kappaB Signaling Dynamics Play a Key Role in Infection Control in Tuberculosis[J]. Front Physiol, 2012, 3:170.
16
Deng W, Li W, Zeng J, et al. Mycobacterium tuberculosis PPE family protein Rv1808 manipulates cytokines profile via co-activation of MAPK and NF-kappaB signaling pathways[J]. Cell Physiol Biochem, 2014, 33(2):273-288.
17
Parveen N, Varman R, Nair S, et al. Endocytosis of Mycobacterium tuberculosis heat shock protein 60 is required to induce interleukin-10 production in macrophages[J]. J Biol Chem, 2013, 288(34):24956-24971.
18
Bansal K, Sinha AY, Ghorpade DS, et al. Src homology 3-interacting domain of Rv1917c of Mycobacterium tuberculosis induces selective maturation of human dendritic cells by regulating PI3K-MAPK-NF-kappaB signaling and drives Th2 immune responses[J]. J Biol Chem, 2010, 285(47):36511-36522.
19
Zhao Q, Li W, Chen T, et al. Mycobacterium tuberculosis serine protease Rv3668c can manipulate the host-pathogen interaction via Erk-NF-κB axis-mediated cytokine differential expression[J]. J Interferon Cytokine Res, 2014, 34(9):686-698.
20
Futosi K, Fodor S, Mócsai A. Reprint of Neutrophil cell surface receptors and their intracellular signal transduction pathways[J]. Int Immunopharmacol, 2013, 17(4):1185-1197.
21
Yu X, Zeng J, Xie J. Navigating through the maze of TLR2 mediated signaling network for better mycobacterium infection control[J]. Biochimie, 2014, 102:1-8.
[1] 杨瑾, 刘雪克, 张媛媛, 金钧, 韦瑶. 肠道微生物来源石胆酸对脓毒症相关肝损伤的保护作用[J]. 中华危重症医学杂志(电子版), 2024, 17(04): 265-274.
[2] 李璐璐, 马利红, 金佳佳, 谷伟. 干扰素基因刺激因子通过肺巨噬细胞胞葬功能调控急性肺损伤小鼠修复的研究[J]. 中华危重症医学杂志(电子版), 2024, 17(02): 97-103.
[3] 薛嘉怡, 王丽, 艾涛. 巨噬细胞在儿童肺炎支原体肺炎中作用机制的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(06): 643-648.
[4] 陆宜仙, 张震涛, 夏德萌, 王家林. 巨噬细胞极化在骨质疏松中调控作用及机制的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 538-541.
[5] 王鹏, 肖厚安, 贾赤宇. 不同因素调控巨噬细胞极化在慢性难愈性创面中的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 454-459.
[6] 龚丽文, 张旭. 血尿阴性不典型泌尿道结核一例及文献复习[J]. 中华实验和临床感染病杂志(电子版), 2024, 18(01): 60-63.
[7] 狄静怿, 陈禹江, 陈欣欣, 陈文霞. 基质细胞衍生因子1通过PI3K/AKT1信号通路对巨噬细胞极化的影响[J]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 89-95.
[8] 李卓骋, 陈羽翔, 高亮, 张宇, 朱许源, 马晓杰, 李涛, 赵甜甜, 蒋鸿涛. 巨噬细胞-肌成纤维细胞转化在肾纤维化过程中的作用[J]. 中华移植杂志(电子版), 2024, 18(03): 181-185.
[9] 巨春蓉, 孙启全, 薛武军. 器官移植受者非结核分枝杆菌病诊疗进展[J]. 中华移植杂志(电子版), 2024, 18(01): 1-6.
[10] 曹飞, 庞俊. 前列腺癌免疫微环境中免疫抑制性细胞分类及其作用机制[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 121-125.
[11] 朱军, 宋家伟, 乔一桓, 郭雅婕, 刘帅, 姜玉, 李纪鹏. M2型巨噬细胞特征基因与结肠癌免疫微环境研究[J]. 中华结直肠疾病电子杂志, 2024, 13(04): 303-311.
[12] 金艳盛, 董改琴, 李晓忠. 巨噬细胞在慢性肾脏病患者血管钙化中的作用与机制研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 234-237.
[13] 李松栗, 黄蔚, 巢杰, 杨毅, 邱海波. 单核/巨噬细胞来源的细胞外囊泡在急性呼吸窘迫综合征中的研究进展[J]. 中华重症医学电子杂志, 2024, 10(03): 253-257.
[14] 陈含冰, 储翠林, 邱海波. 急性呼吸窘迫综合征中巨噬细胞死亡方式的研究进展[J]. 中华重症医学电子杂志, 2024, 10(01): 79-84.
[15] 李仔祥, 王苏贵, 张先云, 卢建文, 嵇宏声, 姜福金. 肿瘤相关性巨噬细胞通过TNF-α/B7H3调节人膀胱癌细胞增殖的研究[J]. 中华临床医师杂志(电子版), 2024, 18(01): 64-71.
阅读次数
全文


摘要