切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2019, Vol. 12 ›› Issue (04) : 463 -468. doi: 10.3877/cma.j.issn.1674-6902.2019.04.012

论著

孤立性肺结节危险因素及良恶性预测模型
曹芹1,(), 李雪冰1, 张丽2, 刘珂崎3   
  1. 1. 625000 四川省雅安市人民医院呼吸与危重症医学科
    2. 625000 四川省雅安市人民医院放射科
    3. 625000 四川省雅安市人民医院胸外科
  • 收稿日期:2019-03-19 出版日期:2019-08-20
  • 通信作者: 曹芹

Analysis of risk factors of solitary pulmonary nodules and exploration of predictive model for benign and malignant pulmonary nodules

Qin Cao1,(), Xuebing Li1, Li Zhang2, Keqi Liu3   

  1. 1. Department of Respiratory and Critical Care Medicine, Ya′an People′s Hospital, Ya′an 625000, Sichuan Province, China
    2. Radiology, Ya′an People′s Hospital, Ya′an 625000, Sichuan Province, China
    3. Thoracic Surgery, Ya′an People′s Hospital, Ya′an 625000, Sichuan Province, China
  • Received:2019-03-19 Published:2019-08-20
  • Corresponding author: Qin Cao
引用本文:

曹芹, 李雪冰, 张丽, 刘珂崎. 孤立性肺结节危险因素及良恶性预测模型[J]. 中华肺部疾病杂志(电子版), 2019, 12(04): 463-468.

Qin Cao, Xuebing Li, Li Zhang, Keqi Liu. Analysis of risk factors of solitary pulmonary nodules and exploration of predictive model for benign and malignant pulmonary nodules[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2019, 12(04): 463-468.

目的

分析孤立性肺结节的危险因素并探讨肺部结节良恶性预测模型。

方法

收集雅安市人民医院2017年1月至2018年8月经胸外科手术切除且有明确病理诊断的112例孤立性肺结节患者的临床资料。回顾性分析其年龄、性别、吸烟史、肿瘤家族史、既往肿瘤史、血清癌胚抗原(CEA)、神经元特异性烯醇化酶(NSE)、细胞角蛋白19片段(CYFRA21-1),以及肺部结节密度、直径、位置、分叶、毛刺、胸膜凹陷征、血管集束征、空泡征、空气支气管征、钙化等影像学特征。根据病理诊断分为良性、恶性两组,进行单因素分析,将单因素分析中有显著性差异的临床信息纳入Logistic回归分析,筛选出恶性结节的独立危险因素并建立预测模型。

结果

单因数分析中年龄、既往肿瘤史、CEA、CYFRA21-1、结节密度、分叶、毛刺、胸膜凹陷征、血管集束征、空泡征、钙化征有统计学差异(P<0.05)。Logjistic回归分析显示患者年龄、CEA、CYFRA21-1、磨玻璃密度、分叶为恶性结节的独立危险因素。恶性肺部结节的预测模型公式为:Pex/(1+ex),x=-8.816+(3.018×密度)+(0.073×年龄)+(0.482×CEA)+(0.426×CRFRA21-1)+(1.421×分叶)。

结论

患者年龄、血CEA、血CYFRA21-1、磨玻璃密度、分叶为恶性结节的独立危险因素,预测模型对恶性肺结节有较好的敏感性及特异性,诊断准确性较高。

Objective

To analyze the risk factors of solitary pulmonary nodules and establish a predictive model for benign and malignant pulmonary nodules.

Methods

The clinical data of 112 patients with solitary pulmonary nodules, who had a definite pathological diagnosis and underwent thoracic surgery in Ya′an People′s Hospital from January 2017 to August 2018, were reviewed respectively. Their age, gender, smoking history, family history of cancer, past cancer history, serum cancer biomarkers including carcinoembryonic antigen (CEA), neuron specific enolase (NSE) and cytokeratin 19 fragment (CYFRA21-1), and the radiological charateristics including the nodule density, diameter, location, lobulation, burr, pleural indentation, vascular cluster sign, vacuole sign, air information of bronchial sign and calcification sign, were summarized. The patients were divided into two groups according to the pathological diagnosis of their benign or malignant pulmonary nodules. After a univariate analysis, the clinical information with significant differences was chosen for logistic regression analysis and these independent risk factors for malignant pulmonary nodules were screened. Finally, a predicative model for benign and malignant pulmonary nodules was established.

Results

There were significant differences in age, past cancer history, serum CEA and CYFRA21-1, nodule density, lobulation, burr, pleural indentation sign, vascular cluster sign, vacuole sign and calcification sign between the patients with benign and malignant pulmonary nodules (P<0.05). Logistic regression analysis showed that age, CEA, CYFRA21-1, ground glass density and lobulation were independent risk factors for malignant pulmonary nodules. One model was established as following: P=ex/(1+ ex), x=-8.816+ (3.018×density)+ (0.073×age)+ (0.482×CEA)+ (0.426×CRFRA21-1)+ (1.421×lobulation).

Conclusion

Age, CEA, CYFRA21-1, ground glass density and lobulation are independent risk factors for malignant pulmonary nodules. And the predictive model of malignant pulmonary nodules has a better sensitivity and specificity and a high diagnostic accuracy.

表1 良、恶性患者临床特征比较
表2 良、恶性患者影像资料比较
表3 二元logistic分析结果
图1 受试者工作曲线
1
Harzheim D, Eberhardt R, Hoffmann H, et al. The solitary pulmonary nodule[J]. Respiration, 2015, 90(2): 160-172.
2
苏 雷,支修益,张 毅,等. 胸腔镜治疗孤立性肺小结节的分析[J]. 首都医科大学学报,2015, 36(4): 525-528.
3
Manca G, Davin F, Tardelli E, et al. Clinical Impact of Radioguided Localization in the Treatment of Solitary Pulmonary Nodule: A 20-Year Retrospective Analysis. [J]? Clin Nucl Med, 2018, 43 (5): 317-322.
4
Wang Memoli JS, Nietert PJ, et al. Silvestri GA, Meta-analysis of guided bronchoscopy for the evaluation of the pulmonary nodule[J]. Chest, 2012, 142(2): 385-393.
5
周薇薇,郑 荣,邓 颖,等. 2013年四川省肿瘤登记地区恶性肿瘤发病和死亡分析[J]. 中国肿瘤,2018, 27(7): 489-496.
6
Swensen SJ, Silverstrin MD, Iistrup DM, et al. The probability of malignancy in solitary pulmonary nodules:application to small radiologically in determinate odules[J]. Arch Inter Med, 1997, 157(8): 849-855.
7
李 运,陈克忠,隋锡朝,等. 孤立性肺结节良恶性判断数学预测模型的建立[J]. 北京大学学报:医学版,2011, 43(3): 450-454.
8
Gould MK, Ananth L, Bamett pg. A clinicai model to estimate the pretestprobabability of lung cancer in patients with solitary pulmonary nodules[J]. Chest, 2007, 131(2): 383-388.
9
林 洁,唐 坤,殷薇薇,等. PET/CT及其数学预测模型对孤立性肺结节诊断价值的对比研究[J]. 温州医科大学学报,2015, 45(5): 354-358.
10
Yonemori K, Tateishi U, Uno H, et al. Development and validation of diagnostic prediction model for solitary pulmonary nodules[J]. Respirology, 2007, 12(6): 856-862.
11
夏 旭,胡宁东,袁海云,等. 孤立性肺结节病变性质临床鉴别诊断预测模型的初探[J/CD]. 中华肺部疾病杂志(电子版), 2012, 5(3): 265-269.
12
彭笑怒,黄海波,仲崇文,等. 血清肿瘤标志物检测在孤立性肺内结节诊断中的价值[J]. 中国实验诊断学,2009, 13(3): 359-361.
13
Seemann MD, Einerl T, Furst H, et al. An evaluation of the tumor markers, carcino embryonic antigen(CEA), cytokerat in marker(CYFRA21-1)and neuron-specific enolas(NSE)in the differentiation of malignant from benign solitary pulmonary lesions[J]. Lung Cancer, 1999, 26(3): 149.
14
沈德义,沈敏棋,李 炯,等. CYFRA21-1检测对非小细胞肺癌的临床意义[J]. 肿瘤研究与临床,2001, 27(1): 49-50.
15
项杨威,孙益峰,高 文,等. 实性孤立性肺结节良恶性预测模型的建立[J]. 中华医学杂志,2016, 96(17): 1354-1358.
16
李笑莹,刘 芳,车海杰,等. 肿瘤标志物预测孤立性肺结节恶性概率模型的建立与初步评价[J]. 山东大学学报(医学版), 2017, 55(4): 60-64.
17
王 欣,徐跃华,杜紫燕,等. 孤立性肺结节的CT影像学特征及良恶性预测模型的建立[J]. 中华肿瘤杂志,2018, 40(2): 115-120.
18
喻 微,叶 波,续力云,等. 预测恶性孤立性肺结节logistic回归诊断模型的建立[J]. 温州医科大学学报,2017, 47(9): 660-665.
19
姚 羽,徐 婷,林 勇,等. 不同密度恶性孤立性肺结节临床及病理资料分析[J]. 临床肺科杂志,2019, 24(1): 90-94.
20
邱志新,李为民. 328例HRCT表现为孤立性磨玻璃结节肺癌患者的临床、病理及影像学特征分析[J]. 中国呼吸与危重监护杂志,2018, 17(5): 470-476.
21
陈 婧,叶晓 丹,叶剑定,等. 孤立性肺结节良恶性判断的数学预测模型建立与验证[J]. 中国医学计算机成像杂志,2016, 22(6): 573-577.
22
中华医学会呼吸病学分会肺癌学组,中国肺癌防治联盟专家组.肺结节诊治中国专家共识(2018年版) [J]. 中华结核和呼吸杂志,2018, 41(10): 763-771.
23
朱 颖,许攀峰,姚亚克,等. 恶性孤立性肺小结节的独立预测因子及预测模型[J]. 中国肿瘤临床,2018, 45(10): 497-502.
24
鲍 彤,肖 飞,郭永庆,等. 对孤立性肺结节恶性概率预测模型的验证、比较和改良[J]. 中国胸心血管外科临床杂志,2018, 26(6): 471-476.
25
McWilliams A, Tammemagi MC, Mayo JR, et al. Probability of cacer in pulmonary nodules detected on first screening CT[J]. NEngl J Med, 2013, 369(10): 910-919.
26
Zhang M, Zhou N, Guo Z, et al. Establishment of a mathematic model for predicting malignancy in solitary pulmonary nodules[J]. Thorac Dis, 2015, 7(10): 1833-1834.
27
Herder GL, van Tinteren H, Golding RP, et al. Clinical prediction model to characterize pulmonary nodules: validation and added value of 18F-fluorodeoxyglucose positron emission tomography[J]. Chest, 2005, 128(4): 2490-2496.
28
Gibson G, Kumar AR, Steinke K, et al. Risk stratification in the investigation of pulmonary nodules in a high-risk cohort:positron emission tomography/computed outperforms clinical risk prediction algorithms[J]. Interm Med J, 2017, 47(12): 1385-1392.
29
Wang L, Chen Y, Tang K, et al. The value of 18F-FDG PET/CT mathematical prediction model in diagnosis of solitary pulmonary nodules[J]. Biomed Res Int, 2018, 2018: 9453967.
30
Perandini S, Soardi GA, Motton M, et al. Solid pulmonary nodule risk assessment and decision analysis:comparision of four predition models in 285 cases[J]. Eur Radio, 2016, 26(9): 3071-3076.
31
Perandini S, Soardi GA, Motton M, et al. Enhanced characterization of solid solitary pulmonary nodules with Bayesian analysis-based computer-aided diagnosis[J]. World J Radio, 2016, 8(8): 729-734.
[1] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[2] 张锦丽, 席毛毛, 褚志刚, 栾夏刚, 陈诺, 王德运, 谢卫国. 大面积烧伤患者发生早期急性肾损伤的危险因素分析[J]. 中华损伤与修复杂志(电子版), 2024, 19(04): 282-287.
[3] 罗文斌, 韩玮. 胰腺癌患者首次化疗后中重度骨髓抑制的相关危险因素分析及预测模型构建[J]. 中华普通外科学文献(电子版), 2024, 18(05): 357-362.
[4] 李国煜, 丛赟, 祖丽胡马尔·麦麦提艾力, 何铁英. 急性胰腺炎并发门静脉系统血栓形成的危险因素及预测模型构建[J]. 中华普通外科学文献(电子版), 2024, 18(04): 266-270.
[5] 贺斌, 马晋峰. 胃癌脾门淋巴结转移危险因素[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 694-699.
[6] 黄俊龙, 刘柏隆, 罗瑞翔, 李晓阳, 李文双, 柳政, 陈嘉良, 周祥福. 联合盆底彩超数据和临床资料探讨压力性尿失禁的危险因素[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 323-330.
[7] 江杰, 沈城, 潘永昇, 陈新风, 刘振民, 朱华, 郑兵. 尿酸结石的危险因素分析及双能量CT特征研究[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 361-365.
[8] 周劲鸿, 王鉴杰, 谢肖俊. 腹腔镜经腹腹膜前疝修补术后尿潴留发生率及危险因素分析[J]. 中华疝和腹壁外科杂志(电子版), 2024, 18(04): 390-395.
[9] 陈钊, 钟克力, 江志鹏, 傅宇翔, 范宝航, 吴文飞. 前列腺癌术后腹股沟疝的发生率及危险因素分析[J]. 中华疝和腹壁外科杂志(电子版), 2024, 18(04): 396-401.
[10] 冀旭, 朱峰, 冯业晨. 保留器官功能的胰腺切除术后胆道并发症发生危险因素分析[J]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 509-514.
[11] 国超凡, 彭琪博, 郑章强, 于向阳. 低位前切除综合征风险预测及治疗的研究进展[J]. 中华结直肠疾病电子杂志, 2024, 13(04): 335-340.
[12] 刘伟, 高续, 谢玉海, 蒋哲, 刘士成. 基于增强CT影像组学模型在预测急性胰腺炎复发中的应用价值[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 348-354.
[13] 田娜, 韩飞天. 基于CT平扫影像组学模型与系统免疫炎症指数预测急性胰腺炎复发模型的建立[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 355-359.
[14] 董晟, 郎胜坤, 葛新, 孙少君, 薛明宇. 反向休克指数乘以格拉斯哥昏迷评分对老年严重创伤患者发生急性创伤性凝血功能障碍的预测价值[J]. 中华临床医师杂志(电子版), 2024, 18(06): 541-547.
[15] 黄镪, 孙金梅, 韩燕飞, 张拥波. 脑源性与非脑源性疾病所致应激性溃疡相关胃肠道出血的影响因素及临床预后差异:一项回顾性队列研究[J]. 中华脑血管病杂志(电子版), 2024, 18(04): 309-316.
阅读次数
全文


摘要