1 |
Ashbaugh DG, Bigelow DB, Petty TL, et al. Acute respiratory distress in adults[J]. Lancet, 1967, 2(7511): 319-323.
|
2 |
Bernard GR, Artigas A, Brigham KL, et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination[J]. Am J Respir Crit Care Med, 1994, 149(3 Pt 1): 818-824.
|
3 |
ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin Definition[J]. JAMA, 2012, 307(23): 2526-2533.
|
4 |
Rubenfeld GD, Caldwell E, Peabody E, et al. Incidence and outcomes of acute lung injury[J]. N Engl J Med, 2005, 353(16): 1685-1693.
|
5 |
Ware LB, Matthay MA.The acute respiratory distress syndrome[J]. N Engl J Med, 2000, 342(18): 1334-1349.
|
6 |
Villar J. What is the acute respiratory distress syndrome?[J]. Respir Care, 2011, 56(10): 1539-1545.
|
7 |
Lucas R, Verin AD, Black SM, et al. Regulators of endothelial and epithelial barrier integrity and function in acute lung injury[J]. Biochem Pharmacol, 2009, 77(12): 1763-1772.
|
8 |
Bhandari V, Choo-Wing R, Lee CG, et al. Hyperoxia causes angiopoietin 2-mediated acute lung injury and necrotic cell death[J]. Nat Med, 2006, 12(11): 1286-1293.
|
9 |
Calfee CS, Gallagher D, Abbott J, et al. Plasma angiopoietin-2 in clinical acute lung injury: prognostic and pathogenetic significance[J]. Crit Care Med, 2012, 40(6): 1731-1737.
|
10 |
Terpstra ML, Aman J, van Nieuw Amerongen GP, et al. Plasma biomarkers for acute respiratory distress syndrome: a systematic review and meta-analysis[J]. Crit Care Med, 2014, 42(3): 691-700.
|
11 |
Reilly JP, Bellamy S, Shashaty MG, et al. Heterogeneous phenotypes of acute respiratory distress syndrome after major trauma[J]. Ann Am Thorac Soc, 2014, 11(5): 728-736.
|
12 |
Ganter MT, Cohen MJ, Brohi K, et al. Angiopoietin-2, marker and mediator of endothelial activation with prognostic significance early after trauma? [J]. Ann Surg, 2008,247(2): 320-326.
|
13 |
Sakamaki F, Ishizaka A, Handa M, et al. Soluble form of P-selectin in plasma is elevated in acute lung injury[J]. Am J Respir Crit Care Med, 1995, 151(6): 1821-1826.
|
14 |
Osaka D, Shibata Y, Kanouchi K, et al. Soluble endothelial selectin in acute lung injury complicated by severe pneumonia[J]. Int J Med Sci, 2011, 8(4): 302-308.
|
15 |
Okajima K, Harada N, Sakurai G, et al. Rapid assay for plasma soluble E-selectin predicts the development of acute respiratory distress syndrome in patients with systemic inflammatory response syndrome[J]. Transl Res, 2006, 148(6): 295-300.
|
16 |
Shibuya M. Vascular endothelial growth factor and its receptor system:physiological functions in angiogenesis and pathological roles in various diseases[J]. J Biochem, 2013, 153(1): 13-19.
|
17 |
Thickett DR, Armstrong L, Christie SJ, et al.Vascular endothelial growth factor may contribute to increased vascular permeability in acute respiratory distress syndrome[J]. Am J Respir Crit Care Med, 2001, 164(9): 1601-1605.
|
18 |
Thickett DR, Armstrong L, Millar AB. A role for vascular endothelial growth factor in acute and resolving lung injury[J]. Am J Respir Crit Care Med, 2002, 166(10): 1332-1337.
|
19 |
Maitre B, Boussat S, Jean D, et al. Vascular endothelial growth factor synthesis in the acute phase of experimental and clinical lung injury[J]. Eur Respir J, 2001, 18(1): 100-106.
|
20 |
Guo J, Yan W, Yang Y, et al. Monitoring of vascular endothelial growth factor and its soluble receptor levels in early trauma[J]. J Trauma Acute Care Surg, 2017, 82(4): 766-770.
|
21 |
Wada T, Jesmin S, Gando S, et al. The role of angiogenic factors and their soluble receptors in acute lung injury (ALI)/ acute respiratory distress syndrome (ARDS) associated with critical illness[J]. J Inflamm (Lond), 2013, 10(1): 6.
|
22 |
Rubin DB, Wiener-Kronish JP, Murray JF, et al. Elevated von Willebrand factor antigen is an early plasma predictor of acute lung injury in no pulmonary sepsis syndrome[J]. J Clin Invest, 1990, 86(2): 474-480.
|
23 |
Ware LB, Eisner MD, Thompson BT, et al. Significance of von Willebrand factor in septic and nonseptic patients with acute lung injury[J]. Am J Respir Crit Care Med, 2004, 170(7): 766-772.
|
24 |
Calfee CS, Eisner MD, Ware LB, et al. Trauma-associated lung injury differs clinically and biologically from acute lung injury due to other clinical disorders[J]. Crit Care Med, 2007, 35(10): 2243-2250.
|
25 |
Ioakeimidou A, Pagalou E, Kontogiorgi M, et al. Increase of circulating endocan over sepsis follow-up is associated with progression into organ dysfunction[J]. Eur J Clin Microbiol Infect Dis, 2017, 36(10): 1749-1756.
|
26 |
Orbegozo D, Rahmania L, Irazabal M, et al. Endocan as an early biomarker of severity in patients with acute respiratory distress syndrome[J]. Ann Intensive Care, 2017, 7(1): 93.
|
27 |
Mikkelsen ME, Shah CV, Scherpereel A, et al. Lower serum endocan levels are associated with the development of acute lung injury after major trauma[J]. J Crit Care, 2012, 27(5): 522.e11-17.
|
28 |
Jabaudon M, Futier E, Roszyk L, et al. Soluble form of the receptor for advanced glycation end products is a marker of acute lung injury but not of severe sepsis in critically ill patients[J]. Crit Care Med, 2011, 39(3): 480-488.
|
29 |
Mauri T, Masson S, Pradella A, et al. Elevated plasma and alveolar levels of soluble receptor for advanced glycation endproducts are associated with severity of lung dysfunction in ARDS patients[J]. Tohoku J Exp Med, 2010, 222(2): 105-112.
|
30 |
Nakamura T, Sato E, Fujiwara N, et al. Increased levels of soluble receptor for advanced glycation end products (sRAGE) and high mobility group box 1 (HMGB1) are associated with death in patients with acute respiratory distress syndrome[J]. Clin Biochem, 2011, 44(8-9): 601-604.
|
31 |
Negrin LL, Halat G, Prosch H, et al. Soluble Receptor for Advanced Glycation End Products Quantifies Lung Injury in Polytraumatized Patients[J]. Ann Thorac Surg, 2017, 103(5): 1587-1593.
|
32 |
Nathani N, Perkins GD, Tunnicliffe W, et al. Kerbs von Lungren 6 antigen is a marker of alveolar inflammation but not of infection in patients with acute respiratory distress syndrome[J]. Crit Care, 2008, 12(1): R12.
|
33 |
Sato H, Callister ME, Mumby S, et al. KL-6 levels are elevated in plasma from patients with acute respiratory distress syndrome[J]. Eur Respir J, 2004, 23(1): 142-145.
|
34 |
Ishizaka A, Matsuda T, Albertine KH, et al. Elevation of KL-6, a lung epithelial cell marker, in plasma and epithelial lining fluid in acute respiratory distress syndrome[J]. Am J Physiol Lung Cell Mol Physiol, 2004, 286(6): L1088-94.
|
35 |
Determann RM, Millo JL, Waddy S, et al. Plasma CC16 levels are associated with development of ALI/ARDS in patients with ventilator-associated pneumonia: a retrospective observational study[J]. BMC Pulm Med, 2009, 9: 49.
|
36 |
Lesur O, Langevin S, Berthiaume Y, et al. Outcome value of Clara cell protein in serum of patients with acute respiratory distress syndrome[J]. Intensive Care Med, 2006, 32(8): 1167-1174.
|
37 |
Kropski JA, Fremont RD1, Calfee CS, et al. Clara cell protein (CC16), a marker of lung epithelial injury, is decreased in plasma and pulmonary edema fluid from patients with acute lung injury[J]. Chest, 2009, 135(6): 1440-1447.
|
38 |
Lin J, Zhang W, Wang L, et al. Diagnostic and prognostic values of Club cell protein 16(CC16) in critical care patients with acute respiratory distress syndrome[J]. J Clin Lab Anal, 2017, 32(2). doi: 10.1002/jcla.22262.
|
39 |
Eisner MD, Parsons P, Matthay MA, et al. Plasma surfactant protein levels and clinical outcomes in patients with acute lung injury[J]. Thorax, 2003, 58(11): 983-988.
|
40 |
Ware LB, Koyama T, Zhao Z, et al. Biomarkers of lung epithelial injury and inflammation distinguish severe sepsis patients with acute respiratory distress syndrome[J]. Crit Care, 2013, 17(5): R253.
|
41 |
Park J, Pabon M, Choi AMK, et al. Plasma surfactant protein-D as a diagnostic biomarker for acute respiratory distress syndrome: validation in US and Korean cohorts[J]. BMC Pulm Med, 2017, 17(1): 204.
|
42 |
Park WY, Goodman RB, Steinberg KP, et al. Cytokine balance in the lungs of patients with acute respiratory distress syndrome[J]. Am J Respir Crit Care Med, 2001, 164(10 Pt 1): 1896-903.
|
43 |
Parsons PE, Eisner MD, Thompson BT, et al. Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury[J]. Crit Care Med, 2005, 33(1): 1-6.
|
44 |
Ding Q, Liu GQ, Zeng YY, et al. Role of IL-17 in LPS-induced acute lung injury: an in vivo study[J]. Oncotarget, 2017, 8(55): 93704-93711.
|
45 |
Parsons PE, Matthay MA, Ware LB, et al. Elevated plasma levels of soluble TNF receptors are associated with morbidity and mortality in patients with acute lung injury[J]. Am J Physiol Lung Cell Mol Physiol, 2005, 288(3): L426-431.
|
46 |
Armstrong L, Millar AB. Relative production of tumour necrosis factor alpha and interleukin 10 in adult respiratory distress syndrome[J]. Thorax, 1997, 52(5): 442-446.
|
47 |
Ware LB, Koyama T, Billheimer DD, et al. Prognostic and pathogenetic value of combining clinical and biochemical indices in patients with acute lung injury[J]. Chest, 2010, 137(2): 288-296.
|
48 |
Zhao Z, Wickersham N, Kangelaris KN, et al. External validation of a biomarker and clinical prediction model for hospital mortality in acute respiratory distress syndrome[J]. Intensive Care Med, 2017, 43(8): 1123-1131.
|
49 |
Fremont RD, Koyama T, Calfee CS, et al. Acute lung injury in patients with traumatic injuries: utility of a panel of biomarkers for diagnosis and pathogenesis[J]. J Trauma, 2010, 68(5): 1121-1127.
|