切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2021, Vol. 14 ›› Issue (03) : 308 -311. doi: 10.3877/cma.j.issn.1674-6902.2021.03.010

临床研究

CT特征对肺腺癌患者间隙转移风险模型的构建分析
林琼真1, 胡子良1, 周戈1, 林英1,()   
  1. 1. 363000 漳州,联勤保障部队第九〇九医院医学影像科
  • 收稿日期:2021-01-17 出版日期:2021-06-25
  • 通信作者: 林英
  • 基金资助:
    福建省科学技术厅资助项目(2019Y3007)

Construction analysis of CT characteristics of patients with lung adenocarcinoma in the risk model of space metastasis

Qiongzhen Lin1, Ziliang Hu1, Ge Zhou1   

  • Received:2021-01-17 Published:2021-06-25
引用本文:

林琼真, 胡子良, 周戈, 林英. CT特征对肺腺癌患者间隙转移风险模型的构建分析[J/OL]. 中华肺部疾病杂志(电子版), 2021, 14(03): 308-311.

Qiongzhen Lin, Ziliang Hu, Ge Zhou. Construction analysis of CT characteristics of patients with lung adenocarcinoma in the risk model of space metastasis[J/OL]. Chinese Journal of Lung Diseases(Electronic Edition), 2021, 14(03): 308-311.

目的

应用计算机断层扫描(CT)特征的预测模型以预测肺腺癌患者间隙转移(STAS)风险。

方法

纳入2016年1月至2019年1月我院收治的82例肺腺癌患者为对象;所有患者均接受肺腺癌常规治疗,收集患者入院时人口学资料、临床资料特征,根据患者是否有STAS分为有转移组31例和无转移组51例;采用Cox回归方程分析肺腺癌患者STAS的风险因子并构建风险预测模型,并分析其预测效能。

结果

单变量分析显示有转移组肺腺癌亚型、术后临床分期组间比较差异均有统计学意义(P<0.05),CT特征CTR、pGGNs、SNs、囊性空域、玻璃结节、肺肿瘤边界模糊、胸膜粘连组间差异有统计学意义(P<0.05);Cox分析显示肺腺癌亚型(HR=4.304)、术后临床分期(HR=3.405)、肿瘤最大径(HR=2.178)、胸膜凹陷征(HR=4.883)、空气支气管征(HR=0.207)是肺腺癌患者STAS的风险因素;ROC曲线显示模型预测肺腺癌患者STAS的曲线下面积为0.714。

结论

肺腺癌亚型、术后临床分期、肿瘤最大径、胸膜凹陷征、空气支气管征是肺腺癌患者STAS的风险因素,建立的预测模型为临床识别肺腺癌患者STAS的高危患者提供参考。

表1 两组患者CT征象比较[n(%)]
表2 多因素Cox分析结果
1
Zhang C, Zhang J, Xu FP, et al. Genomic landscape and immune microenvironment features of preinvasive and early invasive lung adenocarcinoma[J]. J Thorac Oncol, 2019, 14(11): 1912-1923.
2
Eguchi T, Kameda K, Lu S, et al. Lobectomy is associated with better outcomes than sublobar resection in spread through air spaces (STAS)-positive T1 lung adenocarcinoma: a propensity score-matched analysis[J]. J Thorac Oncol, 2019, 14(1): 87-98.
3
Toki MI, Harrington K, Syrigos KN. The role of spread through air spaces (STAS) in lung adenocarcinoma prognosis and therapeutic decision making[J]. Lung Cancer, 2020, 146(1): 127-133.
4
Jia M, Yu S, Gao H, et al. Spread through air spaces (STAS) in lung cancer: a multiple-perspective and update review[J]. Cancer Manag Res, 2020, 12: 2743-2752.
5
Jiang C, Luo Y, Yuan J, et al. CT-based radiomics and machine learning to predict spread through air space in lung adenocarcinoma[J]. Eur Radiol, 2020, 30(7): 4050-4057.
6
Li C, Jiang C, Gong J, et al. A CT-based logistic regression model to predict spread through air space in lung adenocarcinoma[J]. Quant Imaging Med Surg, 2020,10(10): 1984-1993.
7
Kim SK, Kim TJ, Chung MJ, et al. Lung adenocarcinoma: CT features associated with spread through air spaces[J]. Radiology, 2018, 289(3): 831-840.
8
姜格宁,陈 昶,朱余明,等. 上海市肺科医院磨玻璃结节早期肺腺癌的诊疗共识(第一版)[J]. 中国肺癌杂志,2018, 21(3): 147-159.
9
Lee MA, Kang J, Lee HY, et al. Spread through air spaces (STAS) in invasive mucinous adenocarcinoma of the lung: Incidence, prognostic impact, and prediction based on clinicoradiologic factors[J]. Thorac Cancer, 2020, 11(11): 3145-3154.
10
钱桂生. 肺癌不同病理类型发病率的变化情况及其原因[J/CD]. 中华肺部疾病杂志(电子版), 2011, 4(1): 1-5.
11
Ma K, Zhan C, Wang S, et al. Spread through air spaces (STAS): a new pathologic morphology in lung cancer[J]. Clin Lung Cancer, 2019, 20(2): 158-162.
12
Qiu X, Chen D, Liu Y, et al. Relationship between stromal cells and tumor spread through air spaces in lung adenocarcinoma[J]. Thorac Cancer, 2019, 10(2): 256-267.
13
Ding Q, Chen D, Wang X, et al. Characterization of lung adenocarcinoma with a cribriform component reveals its association with spread through air spaces and poor outcomes[J]. Lung Cancer, 2019, 134: 238-244.
14
Mino-Kenudson M. Significance of tumor spread through air spaces (STAS) in lung cancer from the pathologist perspective[J]. Transl Lung Cancer Res, 2020, 9(3): 847-859.
15
Falay O, Selçukbiricik F, Tanju S, et al. The prediction of spread through air spaces with preoperative 18F-FDG PET/CT in cases with primary lung adenocarcinoma, its effect on the decision for an adjuvant treatment and its prognostic role[J]. Nucl Med Commun, 2021, 30(10): 14-19.
16
Chen D, She Y, Wang T, et al. Radiomics-based prediction for tumour spread through air spaces in stage I lung adenocarcinoma using machine learning[J]. Eur J Cardiothorac Surg, 2020, 58(1): 51-58.
17
Kuhn E, Morbini P, Cancellieri A, et al. Adenocarcinoma classification:patterns and prognosis[J]. Pathologica, 2018, 110(1): 5-11.
18
Pocha K, Mock A, Rapp C, et al. Surfactant expression defines an inflamed subtype of lung adenocarcinoma brain metastases that correlates with prolonged survival[J]. Clin Cancer Res, 2020, 26(9): 2231-2243.
19
Faruki H, Mayhew GM, Serody JS, et al. Lung adenocarcinoma and squamous cell carcinoma gene expression subtypes demonstrate significant differences in tumor immune landscape[J]. J Thorac Oncol, 2017, 12(6): 943-953.
20
Park CH, Kim TH, Lee S, et al. Correlation between maximal tumor diameter of fresh pathology specimens and computed tomography images in lung adenocarcinoma[J]. PLoS One, 2019, 14(1): e0211141.
[1] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[2] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[3] 庄燕, 戴林峰, 张海东, 陈秋华, 聂清芳. 脓毒症患者早期生存影响因素及Cox 风险预测模型构建[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 372-378.
[4] 李霞林, 贺芳. 产后出血风险评估和早期预警系统[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 498-503.
[5] 黄鸿初, 黄美容, 温丽红. 血液系统恶性肿瘤患者化疗后粒细胞缺乏感染的危险因素和风险预测模型[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 285-292.
[6] 奚玲, 仝瀚文, 缪骥, 毛永欢, 沈晓菲, 杜峻峰, 刘晔. 基于肌少症构建的造口旁疝危险因素预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 48-51.
[7] 黄莹, 李璇, 刘梦杨, 彭桂林, 徐鑫, 韦兵, 杨超. 靶向联合治疗双肺移植术后KRAS和BRAF基因双突变晚期肺腺癌一例[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 298-301.
[8] 屈勤芳, 束方莲. 盆腔器官脱垂患者盆底重建手术后压力性尿失禁发生的影响因素及列线图预测模型构建[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 606-612.
[9] 犹成亿, 尤恒, 叶东樊, 张雯, 刘禹, 王仁宇, 苏琳茜, 甘慧, 徐智. 基于3D Res U-Net-Faster RCNN 技术和CT 影像学特征的肺结节性质预测模型的建立[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 673-679.
[10] 公宇, 廖媛, 尚梅. 肝细胞癌TACE术后复发影响因素及预测模型建立[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 818-824.
[11] 王贝贝, 崔振义, 王静, 王晗妍, 吕红芝, 李秀婷. 老年股骨粗隆间骨折患者术后贫血预测模型的构建与验证[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 355-362.
[12] 孙晗, 于冰, 武侠, 周熙朗. 基于循环肿瘤DNA 甲基化的结直肠癌筛查预测模型的构建与验证[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 500-506.
[13] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[14] 蔡晓雯, 李慧景, 丘婕, 杨翼帆, 吴素贤, 林玉彤, 何秋娜. 肝癌患者肝动脉化疗栓塞术后疼痛风险预测模型的构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 722-728.
[15] 董晟, 郎胜坤, 葛新, 孙少君, 薛明宇. 反向休克指数乘以格拉斯哥昏迷评分对老年严重创伤患者发生急性创伤性凝血功能障碍的预测价值[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 541-547.
阅读次数
全文


摘要