切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2021, Vol. 14 ›› Issue (03) : 308 -311. doi: 10.3877/cma.j.issn.1674-6902.2021.03.010

临床研究

CT特征对肺腺癌患者间隙转移风险模型的构建分析
林琼真1, 胡子良1, 周戈1, 林英1,()   
  1. 1. 363000 漳州,联勤保障部队第九〇九医院医学影像科
  • 收稿日期:2021-01-17 出版日期:2021-06-25
  • 通信作者: 林英
  • 基金资助:
    福建省科学技术厅资助项目(2019Y3007)

Construction analysis of CT characteristics of patients with lung adenocarcinoma in the risk model of space metastasis

Qiongzhen Lin1, Ziliang Hu1, Ge Zhou1   

  • Received:2021-01-17 Published:2021-06-25
引用本文:

林琼真, 胡子良, 周戈, 林英. CT特征对肺腺癌患者间隙转移风险模型的构建分析[J]. 中华肺部疾病杂志(电子版), 2021, 14(03): 308-311.

Qiongzhen Lin, Ziliang Hu, Ge Zhou. Construction analysis of CT characteristics of patients with lung adenocarcinoma in the risk model of space metastasis[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2021, 14(03): 308-311.

目的

应用计算机断层扫描(CT)特征的预测模型以预测肺腺癌患者间隙转移(STAS)风险。

方法

纳入2016年1月至2019年1月我院收治的82例肺腺癌患者为对象;所有患者均接受肺腺癌常规治疗,收集患者入院时人口学资料、临床资料特征,根据患者是否有STAS分为有转移组31例和无转移组51例;采用Cox回归方程分析肺腺癌患者STAS的风险因子并构建风险预测模型,并分析其预测效能。

结果

单变量分析显示有转移组肺腺癌亚型、术后临床分期组间比较差异均有统计学意义(P<0.05),CT特征CTR、pGGNs、SNs、囊性空域、玻璃结节、肺肿瘤边界模糊、胸膜粘连组间差异有统计学意义(P<0.05);Cox分析显示肺腺癌亚型(HR=4.304)、术后临床分期(HR=3.405)、肿瘤最大径(HR=2.178)、胸膜凹陷征(HR=4.883)、空气支气管征(HR=0.207)是肺腺癌患者STAS的风险因素;ROC曲线显示模型预测肺腺癌患者STAS的曲线下面积为0.714。

结论

肺腺癌亚型、术后临床分期、肿瘤最大径、胸膜凹陷征、空气支气管征是肺腺癌患者STAS的风险因素,建立的预测模型为临床识别肺腺癌患者STAS的高危患者提供参考。

表1 两组患者CT征象比较[n(%)]
表2 多因素Cox分析结果
1
Zhang C, Zhang J, Xu FP, et al. Genomic landscape and immune microenvironment features of preinvasive and early invasive lung adenocarcinoma[J]. J Thorac Oncol, 2019, 14(11): 1912-1923.
2
Eguchi T, Kameda K, Lu S, et al. Lobectomy is associated with better outcomes than sublobar resection in spread through air spaces (STAS)-positive T1 lung adenocarcinoma: a propensity score-matched analysis[J]. J Thorac Oncol, 2019, 14(1): 87-98.
3
Toki MI, Harrington K, Syrigos KN. The role of spread through air spaces (STAS) in lung adenocarcinoma prognosis and therapeutic decision making[J]. Lung Cancer, 2020, 146(1): 127-133.
4
Jia M, Yu S, Gao H, et al. Spread through air spaces (STAS) in lung cancer: a multiple-perspective and update review[J]. Cancer Manag Res, 2020, 12: 2743-2752.
5
Jiang C, Luo Y, Yuan J, et al. CT-based radiomics and machine learning to predict spread through air space in lung adenocarcinoma[J]. Eur Radiol, 2020, 30(7): 4050-4057.
6
Li C, Jiang C, Gong J, et al. A CT-based logistic regression model to predict spread through air space in lung adenocarcinoma[J]. Quant Imaging Med Surg, 2020,10(10): 1984-1993.
7
Kim SK, Kim TJ, Chung MJ, et al. Lung adenocarcinoma: CT features associated with spread through air spaces[J]. Radiology, 2018, 289(3): 831-840.
8
姜格宁,陈 昶,朱余明,等. 上海市肺科医院磨玻璃结节早期肺腺癌的诊疗共识(第一版)[J]. 中国肺癌杂志,2018, 21(3): 147-159.
9
Lee MA, Kang J, Lee HY, et al. Spread through air spaces (STAS) in invasive mucinous adenocarcinoma of the lung: Incidence, prognostic impact, and prediction based on clinicoradiologic factors[J]. Thorac Cancer, 2020, 11(11): 3145-3154.
10
钱桂生. 肺癌不同病理类型发病率的变化情况及其原因[J/CD]. 中华肺部疾病杂志(电子版), 2011, 4(1): 1-5.
11
Ma K, Zhan C, Wang S, et al. Spread through air spaces (STAS): a new pathologic morphology in lung cancer[J]. Clin Lung Cancer, 2019, 20(2): 158-162.
12
Qiu X, Chen D, Liu Y, et al. Relationship between stromal cells and tumor spread through air spaces in lung adenocarcinoma[J]. Thorac Cancer, 2019, 10(2): 256-267.
13
Ding Q, Chen D, Wang X, et al. Characterization of lung adenocarcinoma with a cribriform component reveals its association with spread through air spaces and poor outcomes[J]. Lung Cancer, 2019, 134: 238-244.
14
Mino-Kenudson M. Significance of tumor spread through air spaces (STAS) in lung cancer from the pathologist perspective[J]. Transl Lung Cancer Res, 2020, 9(3): 847-859.
15
Falay O, Selçukbiricik F, Tanju S, et al. The prediction of spread through air spaces with preoperative 18F-FDG PET/CT in cases with primary lung adenocarcinoma, its effect on the decision for an adjuvant treatment and its prognostic role[J]. Nucl Med Commun, 2021, 30(10): 14-19.
16
Chen D, She Y, Wang T, et al. Radiomics-based prediction for tumour spread through air spaces in stage I lung adenocarcinoma using machine learning[J]. Eur J Cardiothorac Surg, 2020, 58(1): 51-58.
17
Kuhn E, Morbini P, Cancellieri A, et al. Adenocarcinoma classification:patterns and prognosis[J]. Pathologica, 2018, 110(1): 5-11.
18
Pocha K, Mock A, Rapp C, et al. Surfactant expression defines an inflamed subtype of lung adenocarcinoma brain metastases that correlates with prolonged survival[J]. Clin Cancer Res, 2020, 26(9): 2231-2243.
19
Faruki H, Mayhew GM, Serody JS, et al. Lung adenocarcinoma and squamous cell carcinoma gene expression subtypes demonstrate significant differences in tumor immune landscape[J]. J Thorac Oncol, 2017, 12(6): 943-953.
20
Park CH, Kim TH, Lee S, et al. Correlation between maximal tumor diameter of fresh pathology specimens and computed tomography images in lung adenocarcinoma[J]. PLoS One, 2019, 14(1): e0211141.
[1] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[2] 李国煜, 丛赟, 祖丽胡马尔·麦麦提艾力, 何铁英. 急性胰腺炎并发门静脉系统血栓形成的危险因素及预测模型构建[J]. 中华普通外科学文献(电子版), 2024, 18(04): 266-270.
[3] 丁关棣, 黄云, 曹震, 刘刚. 胃癌根治术后感染性并发症预测:基于真实世界数据的Nomogram模型开发与验证[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 261-266.
[4] 张阳, 纽燕娜, 常丽蓉, 唐国华, 赵萍. ERAS理念下肝棘球蚴病术后并发症风险预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 287-290.
[5] 刘静, 徐爽, 缪亚军. 肺腺癌miR-3653表达与高危型人乳头瘤病毒感染及预后的关系[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 600-604.
[6] 郑琪, 马婕群, 张彦兵, 廖子君, 张锐. EPHA5突变预测肺腺癌免疫检查点抑制剂治疗预后的临床意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 548-552.
[7] 杨竞, 周光文. 肝硬化门静脉高压症治疗后再出血危险因素分析及预测模型构建[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 296-301.
[8] 国超凡, 彭琪博, 郑章强, 于向阳. 低位前切除综合征风险预测及治疗的研究进展[J]. 中华结直肠疾病电子杂志, 2024, 13(04): 335-340.
[9] 王绅, 王如海, 李春, 杨震, 孙菲琳. 中重型颅脑创伤患者住院时间延长的危险因素分析及预测模型构建[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(03): 146-153.
[10] 田娜, 韩飞天. 基于CT平扫影像组学模型与系统免疫炎症指数预测急性胰腺炎复发模型的建立[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 355-359.
[11] 刘伟, 高续, 谢玉海, 蒋哲, 刘士成. 基于增强CT影像组学模型在预测急性胰腺炎复发中的应用价值[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 348-354.
[12] 赵倩, 刘文超, 李玺琳, 章邱东. 老年急性脑梗死诱发胃肠损伤的风险因素分析及模型构建[J]. 中华消化病与影像杂志(电子版), 2024, 14(03): 213-217.
[13] 董晟, 郎胜坤, 葛新, 孙少君, 薛明宇. 反向休克指数乘以格拉斯哥昏迷评分对老年严重创伤患者发生急性创伤性凝血功能障碍的预测价值[J]. 中华临床医师杂志(电子版), 2024, 18(06): 541-547.
[14] 赖敏, 林碧玲, 王亚文, 林玉禧, 欧开雅. 中青年脑卒中患者重返工作的影响因素分析及预测模型构建[J]. 中华脑血管病杂志(电子版), 2024, 18(02): 145-152.
[15] 邓仙裕, 罗钰璇, 张溱乐, 余展鹏, 彭亮. 自发性脑出血重症患者30 d死亡风险预测模型的建立及验证[J]. 中华脑血管病杂志(电子版), 2024, 18(02): 121-128.
阅读次数
全文


摘要