切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2021, Vol. 14 ›› Issue (03) : 390 -392. doi: 10.3877/cma.j.issn.1674-6902.2021.03.037

综述

放射性肺损伤的分子机制及其治疗进展
李杰1, 冉永红1, 郝玉徽1,()   
  1. 1. 400038 重庆,陆军(第三)军医大学军事预防医学系防原教研室
  • 收稿日期:2020-11-18 出版日期:2021-06-25
  • 通信作者: 郝玉徽

Molecular mechanism and treatment progress of radioactive lung injury

Jie Li1, Yonghong Ran1, Yuwei Hao1()   

  • Received:2020-11-18 Published:2021-06-25
  • Corresponding author: Yuwei Hao
引用本文:

李杰, 冉永红, 郝玉徽. 放射性肺损伤的分子机制及其治疗进展[J]. 中华肺部疾病杂志(电子版), 2021, 14(03): 390-392.

Jie Li, Yonghong Ran, Yuwei Hao. Molecular mechanism and treatment progress of radioactive lung injury[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2021, 14(03): 390-392.

1
Hekim N, Cetin Z, Nikitaki Z, et al. Radiation triggering immune response and inflammation[J]. Cancer Letters, 2015, 368(2): 156-163.
2
Marks LB, Bentzen SM, Deasy JO, et al. Radiation dose-volume effects in the Lung[J]. Int J Radiat Oncol Biol Phys, 2010, 76(3, Supplement): S70-S76.
3
Almeida C, Nagarajan D, Tian J, et al. The role of alveolar epithelium in radiation-induced lung injury[J]. PloS one, 2013, 8(1): e53628.
4
Xu SXQC, Liu C, Ji H. Concise review: therapeutic potential of the mesenchymal stem cell derived secretome and extracellular vesicles for radiation-induced lung injury: progress and hypotheses[J]. Stem Cells Translat Med, 2019, 8(4): 344-354.
5
Ghafoori P, Marks LB, Vujaskovic Z, et al. Radiation-induced lung injury. Assessment, management, and prevention[J]. Oncol, 2008, 22(1): 37.
6
Zhao L, Yee M, O′Reilly MA. Transdifferentiation of alveolar epithelial type Ⅱ to type I cells is controlled by opposing TGF-β and BMP signaling[J]. Am J Physiol, 2013, 305(6): L409-L418.
7
Maria OM, Maria AM, Ybarra N, et al. Mesenchymal stem cells adopt lung cell phenotype in normal and radiation-induced lung injury conditions[J]. Appl Immunohistochem Molecul Morphol, 2016, 24(4): 283-295.
8
王东平,刘爱兵,高占玲,等. 人脐带间充质干细胞治疗放射性肺损伤的研究[J]. 中国医学工程,2013, 21(02): 36-37.
9
Wang DP, Liu AB, Gao ZL, et al. Study on the treatment of radiation-induced lung injury with human umbilical cord mesenchymal stem cells[J]. Chinese Medical Engineering, 2013, 21(02): 36-37.
10
张春阳,祝 艳,冯华松. 转染CXCR4的MSCs对放射性肺损伤组织中细胞因子的影响[J]. 西南国防医药,2018, 28(10): 903-906.
11
Demirel C, Demirel C, Kilciksiz SC, et al. Inhibition of radiation-induced oxidative damage in the lung tissue: may acetylsalicylic acid have a positive role?[J]. Inflammation, 2016, 39(1): 158-165.
12
Cao K, Lei X, Liu H, et al. Polydatin alleviated radiation-induced lung injury through activation of Sirt3 and inhibition of epithelial-mesenchymal transition[J]. J Cell Mol Med, 2017, 21(12): 3264-3276.
13
Huang Y, Zhang W, Yu F, et al. The cellular and molecular mechanism of radiation-induced lung injury[J]. Med Sci Monit, 2017, 23: 3446-3450.
14
Rübe C, Rübe CE, Wilfert F, et al. Modulation of radiation-induced tumour necrosis factor α (TNF-α) expression in the lung tissue by pentoxifylline[J]. Radioth Oncol, 2002, 64(2): 177-187.
15
Ozturk B, Egehan I, Atavci S, et al. Pentoxifylline in prevention of radiation-induced lung toxicity in patients with breast and lung cancer: a double-blind randomized trial[J]. Int J Radiat Oncol Biol Phys, 2004, 58(1): 213-219.
16
Zhuang Y, Huang Z, Nishida J, et al. Signaling pathways that lead to the silencing of the interleukin-4-producing potential in Th1 cells[J]. J Interf Cytok Res, 2009, 29(7): 399-406.
17
Poznanski SM, Lee AJ, Nham T, et al. Combined stimulation with interleukin-18 and interleukin-12 potently induces interleukin-8 production by natural killer cells[J]. J Innat Immun, 2017, 9(5): 511-525.
18
Guo J, Gu N, Chen J, et al. Neutralization of interleukin-1 beta attenuates silica-induced lung inflammation and fibrosis in C57BL/6 mice[J]. Arch Toxicol, 2013, 87(11): 1963-1973.
19
Zhang C, Zhao H, Li B, et al. CpG-oligodeoxynucleotides may be effective for preventing ionizing radiation induced pulmonary fibrosis[J]. Toxicol Lett, 2018, 292: 181-189.
20
Groves AM, Johnston CJ, Misra RS, et al. Effects of IL-4 on pulmonary fibrosis and the accumulation and phenotype of macrophage subpopulations following thoracic irradiation[J]. Int J Radiat Biol, 2016, 92(12): 754-765.
21
Ding Nian-Hua, Li Jian Jian, Lun-Quan Sun. Molecular mechanisms and treatment of radiation-induced lung fibrosis[J]. Curr Drug Targets, 2013, 14(11): 1347-1356.
22
Seyfizadeh N, Seyfizadeh N, Gharibi T, et al. Interleukin-13 as an important cytokine: A review on its roles in some human diseases[J]. Acta Microbiol Immunol Hung, 2015, 62(4): 341-378.
23
Chung SI, Horton JA, Ramalingam TR, et al. IL-13 is a therapeutic target in radiation lung injury[J]. Scientific Reports, 2016, 6(1): 39714.
24
Ogata T, Yamazaki H, Teshima T, et al. Early administration of IL-6RA does not prevent radiation-induced lung injury in mice[J]. Radiat Oncol, 2010, 5: 26.
25
Chen Y, Hyrien O, Williams J, et al. Interleukin (IL)-1A and IL-6: applications to the predictive diagnostic testing of radiation pneumonitis[J]. Int J Radiat Oncol Biol Phys, 2005, 62(1): 260-266.
26
Xu F, Yi J, Wang Z, et al. IL-27 regulates the adherence, proliferation,and migration of MSCs and enhances their regulatory effects on Th1 and Th2 subset generations[J]. Immunol Res, 2017, 65(4): 903-912.
27
Islam MS, Stemig ME, Takahashi Y, et al. Radiation response of mesenchymal stem cells derived from bone marrow and human pluripotent stem cells[J]. J Radiat Res, 2015, 56(2): 269-277.
28
Burr SP, Dazzi F, Garden OA. Mesenchymal stromal cells and regulatory T cells: the Yin and Yang of peripheral tolerance?[J]. Immunol Cell Biol, 2013, 91(1): 12-18.
29
Yufang Shi, Gangzheng Hu, Juanjuan Su, et al. Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair[J]. Cell Res, 2010, 20(5): 510-51.
30
Ries C, Egea V, Karow M, et al. MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines[J]. Blood, 2007, 109(9): 4055-4063.
31
Li H, Wang W, Wang G, et al. Interferon-γ and tumor necrosis factor-α promote the ability of human placenta-derived mesenchymal stromal cells to express programmed death ligand-2 and induce the differentiation of CD4+ interleukin-10+ and CD8+ interleukin-10+ Treg subsets[J]. Cytotherapy, 2015, 17(11): 1560-1571.
32
Nitzsche F, Muller C, Lukomska B, et al. Concise review: MSC adhesion cascade-insights into homing and transendothelial migration[J]. Stem Cells, 2017, 35(6): 1446-1460.
33
Salehi H, Amirpour N, Niapour A, et al. An overview of neural differentiation potential of human adipose derived stem cells[J]. Stem Cell Rev Rep, 2016,12(1): 26-41.
34
Shi C, Lv T, Xiang Z, et al. Role of wnt/beta-catenin signaling in epithelial differentiation of lung resident mesenchymal stem cells[J]. J Cell Biochem, 2015, 116(8): 1532-1539.
35
Kyurkchiev Dobroslav, Bochev Ivan, Ivanova-Todorova Ekaterina,et al. Secretion of immunoregulatory cytokines by mesenchymal stem cells[J]. World J Stem Cells, 2014, 6(5): 552-570.
36
Linero I, Chaparro O. Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration[J]. PLoS One, 2014, 9(9): e107001.
37
Monsel A, Zhu Y, Gudapati V, et al. Mesenchymal stem cell derived secretome and extracellular vesicles for acute lung injury and other inflammatory lung diseases[J]. Expert Opin Biol Ther, 2016, 16(7): 859-871.
38
Xue J, Li X, Lu Y, et al. Gene-modified mesenchymal stem cells protect against radiation-induced lung injury[J]. Molecul Therapy, 2013, 21(2): 456-465.
39
D′Agostino B, Sullo N, Siniscalco D, et al. Mesenchymal stem cell therapy for the treatment of chronic obstructive pulmonary disease[J]. Expert Opin Biol Therapy, 2010,10(5): 681-687.
40
Dong LH, Jiang YY, Liu YJ, et al. The anti-fibrotic effects of mesenchymal stem cells on irradiated lungs via stimulating endogenous secretion of HGF and PGE2[J]. Sci Rep, 2015, 5: 8713.
41
Kearns-Jonker M, Dai W, Gunthart M, et al. Genetically engineered mesenchymal stem cells influence gene expression in donor cardiomyocytes and the recipient heart[J]. J Stem Cell Res Ther, 2012, S1: 005.
42
Singh S, Saraiva L, Elkington PT, et al. Regulation of matrix metalloproteinase-1,-3, and -9 in Mycobacterium tuberculosis-dependent respiratory networks by the rapamycin-sensitive PI3K/p70(S6K) cascade[J]. FASEB J, 2014, 28(1): 85-93.
43
Zachar L, Bacenkova D, Rosocha J. Activation, homing, and role of the mesenchymal stem cells in the inflammatory environment[J]. J Inflamm Res, 2016, 9: 231-240.
[1] 李文金, 薛庆云. 白细胞介素家族炎性细胞因子在骨关节炎中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 348-353.
[2] 陈腊青, 林佳佳, 毛洪刚, 童冠海, 汪梦娜, 夏红波, 刘卓, 徐海霞, 赵玉华, 张传领. 血清细胞因子及呼出气一氧化氮在哮喘-慢性阻塞性肺疾病重叠综合征中的临床意义[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 316-320.
[3] 李永浩, 高雪菲, 郭田田, 张进, 张彩针, 刘静. 肥胖合并甲状腺癌相关机制的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(04): 311-315.
[4] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[5] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[6] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[7] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[8] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[9] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[10] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[11] 陈客宏. 干细胞外泌体防治腹膜透析腹膜纤维化新技术研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 180-180.
[12] 陈蕊, 杨洪娜, 方巍, 李鑫鑫, 李甜甜, 于孝义, 王艳雪, 李文玉. 血清与支气管肺泡灌洗液中细胞因子水平与肺内外ARDS的相关性研究[J]. 中华重症医学电子杂志, 2023, 09(03): 251-258.
[13] 单秋洁, 孙立柱, 徐宜全, 王之霞, 徐妍, 马浩, 刘田田. 中老年食管癌患者调强放射治疗期间放射性肺损伤风险模型构建及应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 388-393.
[14] 刘立业, 赵德芳. 非酒精性脂肪肝患者血清细胞因子信号转导抑制因子3、肝X受体α水平与CT影像学特征的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 211-215.
[15] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
阅读次数
全文


摘要