切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2021, Vol. 14 ›› Issue (03) : 390 -392. doi: 10.3877/cma.j.issn.1674-6902.2021.03.037

综述

放射性肺损伤的分子机制及其治疗进展
李杰1, 冉永红1, 郝玉徽1,()   
  1. 1. 400038 重庆,陆军(第三)军医大学军事预防医学系防原教研室
  • 收稿日期:2020-11-18 出版日期:2021-06-25
  • 通信作者: 郝玉徽

Molecular mechanism and treatment progress of radioactive lung injury

Jie Li1, Yonghong Ran1, Yuwei Hao1()   

  • Received:2020-11-18 Published:2021-06-25
  • Corresponding author: Yuwei Hao
引用本文:

李杰, 冉永红, 郝玉徽. 放射性肺损伤的分子机制及其治疗进展[J]. 中华肺部疾病杂志(电子版), 2021, 14(03): 390-392.

Jie Li, Yonghong Ran, Yuwei Hao. Molecular mechanism and treatment progress of radioactive lung injury[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2021, 14(03): 390-392.

1
Hekim N, Cetin Z, Nikitaki Z, et al. Radiation triggering immune response and inflammation[J]. Cancer Letters, 2015, 368(2): 156-163.
2
Marks LB, Bentzen SM, Deasy JO, et al. Radiation dose-volume effects in the Lung[J]. Int J Radiat Oncol Biol Phys, 2010, 76(3, Supplement): S70-S76.
3
Almeida C, Nagarajan D, Tian J, et al. The role of alveolar epithelium in radiation-induced lung injury[J]. PloS one, 2013, 8(1): e53628.
4
Xu SXQC, Liu C, Ji H. Concise review: therapeutic potential of the mesenchymal stem cell derived secretome and extracellular vesicles for radiation-induced lung injury: progress and hypotheses[J]. Stem Cells Translat Med, 2019, 8(4): 344-354.
5
Ghafoori P, Marks LB, Vujaskovic Z, et al. Radiation-induced lung injury. Assessment, management, and prevention[J]. Oncol, 2008, 22(1): 37.
6
Zhao L, Yee M, O′Reilly MA. Transdifferentiation of alveolar epithelial type Ⅱ to type I cells is controlled by opposing TGF-β and BMP signaling[J]. Am J Physiol, 2013, 305(6): L409-L418.
7
Maria OM, Maria AM, Ybarra N, et al. Mesenchymal stem cells adopt lung cell phenotype in normal and radiation-induced lung injury conditions[J]. Appl Immunohistochem Molecul Morphol, 2016, 24(4): 283-295.
8
王东平,刘爱兵,高占玲,等. 人脐带间充质干细胞治疗放射性肺损伤的研究[J]. 中国医学工程,2013, 21(02): 36-37.
9
Wang DP, Liu AB, Gao ZL, et al. Study on the treatment of radiation-induced lung injury with human umbilical cord mesenchymal stem cells[J]. Chinese Medical Engineering, 2013, 21(02): 36-37.
10
张春阳,祝 艳,冯华松. 转染CXCR4的MSCs对放射性肺损伤组织中细胞因子的影响[J]. 西南国防医药,2018, 28(10): 903-906.
11
Demirel C, Demirel C, Kilciksiz SC, et al. Inhibition of radiation-induced oxidative damage in the lung tissue: may acetylsalicylic acid have a positive role?[J]. Inflammation, 2016, 39(1): 158-165.
12
Cao K, Lei X, Liu H, et al. Polydatin alleviated radiation-induced lung injury through activation of Sirt3 and inhibition of epithelial-mesenchymal transition[J]. J Cell Mol Med, 2017, 21(12): 3264-3276.
13
Huang Y, Zhang W, Yu F, et al. The cellular and molecular mechanism of radiation-induced lung injury[J]. Med Sci Monit, 2017, 23: 3446-3450.
14
Rübe C, Rübe CE, Wilfert F, et al. Modulation of radiation-induced tumour necrosis factor α (TNF-α) expression in the lung tissue by pentoxifylline[J]. Radioth Oncol, 2002, 64(2): 177-187.
15
Ozturk B, Egehan I, Atavci S, et al. Pentoxifylline in prevention of radiation-induced lung toxicity in patients with breast and lung cancer: a double-blind randomized trial[J]. Int J Radiat Oncol Biol Phys, 2004, 58(1): 213-219.
16
Zhuang Y, Huang Z, Nishida J, et al. Signaling pathways that lead to the silencing of the interleukin-4-producing potential in Th1 cells[J]. J Interf Cytok Res, 2009, 29(7): 399-406.
17
Poznanski SM, Lee AJ, Nham T, et al. Combined stimulation with interleukin-18 and interleukin-12 potently induces interleukin-8 production by natural killer cells[J]. J Innat Immun, 2017, 9(5): 511-525.
18
Guo J, Gu N, Chen J, et al. Neutralization of interleukin-1 beta attenuates silica-induced lung inflammation and fibrosis in C57BL/6 mice[J]. Arch Toxicol, 2013, 87(11): 1963-1973.
19
Zhang C, Zhao H, Li B, et al. CpG-oligodeoxynucleotides may be effective for preventing ionizing radiation induced pulmonary fibrosis[J]. Toxicol Lett, 2018, 292: 181-189.
20
Groves AM, Johnston CJ, Misra RS, et al. Effects of IL-4 on pulmonary fibrosis and the accumulation and phenotype of macrophage subpopulations following thoracic irradiation[J]. Int J Radiat Biol, 2016, 92(12): 754-765.
21
Ding Nian-Hua, Li Jian Jian, Lun-Quan Sun. Molecular mechanisms and treatment of radiation-induced lung fibrosis[J]. Curr Drug Targets, 2013, 14(11): 1347-1356.
22
Seyfizadeh N, Seyfizadeh N, Gharibi T, et al. Interleukin-13 as an important cytokine: A review on its roles in some human diseases[J]. Acta Microbiol Immunol Hung, 2015, 62(4): 341-378.
23
Chung SI, Horton JA, Ramalingam TR, et al. IL-13 is a therapeutic target in radiation lung injury[J]. Scientific Reports, 2016, 6(1): 39714.
24
Ogata T, Yamazaki H, Teshima T, et al. Early administration of IL-6RA does not prevent radiation-induced lung injury in mice[J]. Radiat Oncol, 2010, 5: 26.
25
Chen Y, Hyrien O, Williams J, et al. Interleukin (IL)-1A and IL-6: applications to the predictive diagnostic testing of radiation pneumonitis[J]. Int J Radiat Oncol Biol Phys, 2005, 62(1): 260-266.
26
Xu F, Yi J, Wang Z, et al. IL-27 regulates the adherence, proliferation,and migration of MSCs and enhances their regulatory effects on Th1 and Th2 subset generations[J]. Immunol Res, 2017, 65(4): 903-912.
27
Islam MS, Stemig ME, Takahashi Y, et al. Radiation response of mesenchymal stem cells derived from bone marrow and human pluripotent stem cells[J]. J Radiat Res, 2015, 56(2): 269-277.
28
Burr SP, Dazzi F, Garden OA. Mesenchymal stromal cells and regulatory T cells: the Yin and Yang of peripheral tolerance?[J]. Immunol Cell Biol, 2013, 91(1): 12-18.
29
Yufang Shi, Gangzheng Hu, Juanjuan Su, et al. Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair[J]. Cell Res, 2010, 20(5): 510-51.
30
Ries C, Egea V, Karow M, et al. MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines[J]. Blood, 2007, 109(9): 4055-4063.
31
Li H, Wang W, Wang G, et al. Interferon-γ and tumor necrosis factor-α promote the ability of human placenta-derived mesenchymal stromal cells to express programmed death ligand-2 and induce the differentiation of CD4+ interleukin-10+ and CD8+ interleukin-10+ Treg subsets[J]. Cytotherapy, 2015, 17(11): 1560-1571.
32
Nitzsche F, Muller C, Lukomska B, et al. Concise review: MSC adhesion cascade-insights into homing and transendothelial migration[J]. Stem Cells, 2017, 35(6): 1446-1460.
33
Salehi H, Amirpour N, Niapour A, et al. An overview of neural differentiation potential of human adipose derived stem cells[J]. Stem Cell Rev Rep, 2016,12(1): 26-41.
34
Shi C, Lv T, Xiang Z, et al. Role of wnt/beta-catenin signaling in epithelial differentiation of lung resident mesenchymal stem cells[J]. J Cell Biochem, 2015, 116(8): 1532-1539.
35
Kyurkchiev Dobroslav, Bochev Ivan, Ivanova-Todorova Ekaterina,et al. Secretion of immunoregulatory cytokines by mesenchymal stem cells[J]. World J Stem Cells, 2014, 6(5): 552-570.
36
Linero I, Chaparro O. Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration[J]. PLoS One, 2014, 9(9): e107001.
37
Monsel A, Zhu Y, Gudapati V, et al. Mesenchymal stem cell derived secretome and extracellular vesicles for acute lung injury and other inflammatory lung diseases[J]. Expert Opin Biol Ther, 2016, 16(7): 859-871.
38
Xue J, Li X, Lu Y, et al. Gene-modified mesenchymal stem cells protect against radiation-induced lung injury[J]. Molecul Therapy, 2013, 21(2): 456-465.
39
D′Agostino B, Sullo N, Siniscalco D, et al. Mesenchymal stem cell therapy for the treatment of chronic obstructive pulmonary disease[J]. Expert Opin Biol Therapy, 2010,10(5): 681-687.
40
Dong LH, Jiang YY, Liu YJ, et al. The anti-fibrotic effects of mesenchymal stem cells on irradiated lungs via stimulating endogenous secretion of HGF and PGE2[J]. Sci Rep, 2015, 5: 8713.
41
Kearns-Jonker M, Dai W, Gunthart M, et al. Genetically engineered mesenchymal stem cells influence gene expression in donor cardiomyocytes and the recipient heart[J]. J Stem Cell Res Ther, 2012, S1: 005.
42
Singh S, Saraiva L, Elkington PT, et al. Regulation of matrix metalloproteinase-1,-3, and -9 in Mycobacterium tuberculosis-dependent respiratory networks by the rapamycin-sensitive PI3K/p70(S6K) cascade[J]. FASEB J, 2014, 28(1): 85-93.
43
Zachar L, Bacenkova D, Rosocha J. Activation, homing, and role of the mesenchymal stem cells in the inflammatory environment[J]. J Inflamm Res, 2016, 9: 231-240.
[1] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[2] 张桂萍, 丘勇林, 湛绮婷, 孙乐栋. 晚期非小细胞肺癌血清Ape1/Ref-1对放射性肺损伤发生的预测意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 519-523.
[3] 蒋丽芳, 林冰. 桑菊清解汤联合左氧氟沙星治疗社区获得性肺炎的临床分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 458-461.
[4] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[5] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[6] 徐嘉愉, 张复华, 牛国敏, 梁家宝, 潘焕玉, 麦秀蕖, 杨国雷, 徐嘉良, 黄佑勇. Th1/Th2细胞因子谱在恶性血液肿瘤患者化疗后中性粒细胞缺乏伴感染的应用价值[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 143-150.
[7] 孙海燕, 周士燕, 张杉杉, 张研, 张茜. 间充质干细胞及其外泌体在高原肺水肿中的潜在治疗机制研究进展[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 186-190.
[8] 凌淑洵, 涂玥, 刘思逸. 间充质干细胞在慢性肾脏病研究领域现状和趋势的知识图谱可视化分析[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 73-82.
[9] 王娟, 刘晔, 熊威, 蒋财磊, 贺燕, 叶青松. 间充质干细胞缓解阿尔茨海默病氧化应激的新思路[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 93-106.
[10] 梁国豪, 张茜, 张研. 间充质干细胞及其衍生物治疗高原低氧环境下心血管疾病的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 107-112.
[11] 阿卜杜萨拉木·图尔荪麦麦提, 吐尔洪江·吐逊, 温浩. 肝脏缺血-再灌注损伤与cGAS-STING信号通路[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 394-397.
[12] 陆雅斐, 皇甫少华, 马传学, 江滨. 间充质干细胞治疗肛瘘手术方式的研究进展[J]. 中华结直肠疾病电子杂志, 2024, 13(03): 242-249.
[13] 史敬萱, 焦圆圆, 田景玮, 卓莉. 间充质干细胞来源外泌体治疗动物糖尿病肾脏病的效果:Meta分析[J]. 中华肾病研究电子杂志, 2024, 13(02): 79-86.
[14] 付章宁, 耿晓东, 张永军, 陆宇平, 孙冠南, 张益帆, 蔡广研, 陈香美, 洪权. 间充质干细胞促进肾脏损伤修复机制研究进展[J]. 中华肾病研究电子杂志, 2024, 13(02): 87-91.
[15] 丛黎, 马林, 陈旭, 李文文, 张亮亮, 周华亭. 改良CT严重指数联合炎症指标在重症急性胰腺炎患者胰腺感染预测及预后评估中的研究[J]. 中华消化病与影像杂志(电子版), 2024, 14(05): 432-436.
阅读次数
全文


摘要