切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2021, Vol. 14 ›› Issue (06) : 833 -836. doi: 10.3877/cma.j.issn.1674-6902.2021.06.037

综述

人工智能在肺结节CT检测和诊断中的研究进展
刘雨柔1, 南岩东1, 王在强1, 金发光1,()   
  1. 1. 710038 西安,空军军医大学第二附属医院呼吸与危重症医学科
  • 收稿日期:2021-05-28 出版日期:2021-12-25
  • 通信作者: 金发光
  • 基金资助:
    陕西省重点研发项目(2019SF-009)

Research progress of artificial intelligence in CT detection and diagnosis of pulmonary nodules

Yurou Liu1, Yandong Nan1, Zaiqiang Wang1   

  • Received:2021-05-28 Published:2021-12-25
引用本文:

刘雨柔, 南岩东, 王在强, 金发光. 人工智能在肺结节CT检测和诊断中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2021, 14(06): 833-836.

Yurou Liu, Yandong Nan, Zaiqiang Wang. Research progress of artificial intelligence in CT detection and diagnosis of pulmonary nodules[J/OL]. Chinese Journal of Lung Diseases(Electronic Edition), 2021, 14(06): 833-836.

1
钱桂生. 肺癌不同病理类型发病率的变化情况及其原因[J/CD]. 中华肺部疾病杂志(电子版), 2011, 4(1): 1-5.
2
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019[J]. CA Cancer J Clin, 2019, 69(1): 7-34.
3
Zheng R, Zeng H, Zhang S, et al. Estimates of cancer incidence and mortality in China, 2013[J]. Chin J Cancer, 2017, 36(1): 66.
4
张晓菊,白 莉,金发光,等. 肺结节诊治中国专家共识(2018年版)[J]. 中华结核和呼吸杂志2018, 41(10): 763-771.
5
Aberle DR, Adams AM, Berg CD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening[J]. N Engl J Med, 2011, 365(5): 395-409.
6
Becker N, Motsch E, Trotter A, et al. Lung cancer mortality reduction by LDCT screening-results from the randomized german LUSI trial[J]. Int J Cancer, 2020, 146(6): 1503-1513.
7
Pastorino U, Silva M, Sestini S, et al. Prolonged lung cancer screening reduced 10-year mortality in the MILD trial: new confirmation of lung cancer screening efficacy[J]. Ann Oncol, 2019, 30(7): 1162-1169.
8
Amisha , Malik P, Pathania M, et al. Overview of artificial intelligence in medicine[J]. J Family Med Prim Care, 2019, 8(7): 2328-2331.
9
范卫杰,张 冬. 影像组学及深度学习在肺结节良恶性鉴别诊断中的新理念[J/CD]. 中华肺部疾病杂志(电子版), 2021, 14(5): 549-553.
10
Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: Clinical challenges and applications[J]. CA Cancer J Clin, 2019, 69(2): 127-157.
11
Lo SB, Freedman MT, Gillis LB, et al. JOURNAL CLUB: Computer-aided detection of lung nodules on CT with a computerized pulmonary vessel suppressed function[J]. AJR Am J Roentgenol, 2018, 210(3): 480-488.
12
Kozuka T, Matsukubo Y, Kadoba T, et al. Efficiency of a computer-aided diagnosis (CAD) system with deep learning in detection of pulmonary nodules on 1-mm-thick images of computed tomography[J]. Jpn J Radiol, 2020, 38(11): 1052-1061.
13
Gong J, Liu JY, Wang LJ, et al. Automatic detection of pulmonary nodules in CT images by incorporating 3D tensor filtering with local image feature analysis[J]. Phys Med, 2018, 46: 124-133.
14
Gong L, Jiang S, Yang Z, et al. Automated pulmonary nodule detection in CT images using 3D deep squeeze-and-excitation networks[J]. Int J Comput Assist Radiol Surg, 2019, 14(11): 1969-1979.
15
Nasrullah N, Sang J, Alam M S, et al. Automated lung nodule detection and classification using deep learning combined with multiple strategies[J]. Sensors(Basel), 19(17): 3722.
16
Gu Y, Lu X, Zhang B, et al. Automatic lung nodule detection using multi-scale dot nodule-enhancement filter and weighted support vector machines in chest computed tomography[J]. PLoS One, 2019, 14(1): e210551.
17
Tan J, Huo Y, Liang Z, et al. Expert knowledge-infused deep learning for automatic lung nodule detection[J]. J Xray Sci Technol, 2019, 27(1): 17-35.
18
Wang Q, Shen F, Shen L, et al. Lung nodule detection in CT images using a raw patch-based convolutional neural network[J]. J Digit Imaging, 2019, 32(6): 971-979.
19
Zheng S, Guo J, Cui X, et al. Automatic pulmonary nodule detection in CT scans using convolutional neural networks based on maximum intensity projection[J]. IEEE Trans Med Imaging, 2020, 39(3): 797-805.
20
Yu J, Yang B, Wang J, et al. 2D CNN versus 3D CNN for false-positive reduction in lung cancer screening[J]. J Med Imaging (Bellingham), 2020, 7(5): 51202.
21
Jin H, Li Z, Tong R, et al. A deep 3D residual CNN for false-positive reduction in pulmonary nodule detection[J]. Med Phys, 2018, 45(5): 2097-2107.
22
Lu X, Gu Y, Yang L, et al. Multi-level 3D Densenets for False-positive reduction in lung nodule detection based on chest computed tomography[J]. Curr Med Imaging, 2020, 16(8): 1004-1021.
23
Zuo W, Zhou F, He Y. An Embedded multi-branch 3D convolution neural network for false positive reduction in lung nodule detection[J]. J Digit Imaging, 2020, 33(4): 846-857.
24
Zhang W, Wang X, Li X, et al. 3D skeletonization feature based computer-aided detection system for pulmonary nodules in CT datasets[J]. Comput Biol Med, 2018, 92: 64-72.
25
Wang B, Si S, Zhao H, et al. False positive reduction in pulmonary nodule classification using 3D texture and edge feature in CT images[J]. Technol Health Care, 2019, 29(3): 1-18.
26
Wu W, Gao L, Duan H, et al. Segmentation of pulmonary nodules in CT images based on 3D-UNET combined with three-dimensional conditional random field optimization[J]. Med Phys, 2020, 47(9): 4054-4063.
27
Liu A, Wang Z, Yang Y, et al. Preoperative diagnosis of malignant pulmonary nodules in lung cancer screening with a radiomics nomogram[J]. Cancer Commun (Lond), 2020, 40(1): 16-24.
28
Feng B, Chen X, Chen Y, et al. Differentiating minimally invasive and invasive adenocarcinomas in patients with solitary sub-solid pulmonary nodules with a radiomics nomogram[J]. Clin Radiol, 2019, 74(7): 570-571.
29
Liu Q, Huang Y, Chen H, et al. The development and validation of a radiomic nomogram for the preoperative prediction of lung adenocarcinoma[J]. BMC Cancer, 2020, 20(1): 533.
30
Onishi Y, Teramoto A, Tsujimoto M, et al. Automated pulmonary nodule classification in computed tomography images using a deep convolutional neural network trained by generative adversarial networks[J]. Biomed Res Int, 2019, 2019: 6051939.
31
Onishi Y, Teramoto A, Tsujimoto M, et al. Multiplanar analysis for pulmonary nodule classification in CT images using deep convolutional neural network and generative adversarial networks[J]. Int J Comput Assist Radiol Surg, 2020, 15(1): 173-178.
32
Onishi Y, Teramoto A, Tsujimoto M, et al. Investigation of pulmonary nodule classification using multi-scale residual network enhanced with 3DGAN-synthesized volumes[J]. Radiol Phys Technol, 2020,13(2): 160-169.
33
Zhang G, Yang Z, Gong L, et al. Classification of lung nodules based on CT images using squeeze-and-excitation network and aggregated residual transformations[J]. Radiol Med, 2020, 125(4): 374-383.
34
Li S, Xu P, Li B, et al. Predicting lung nodule malignancies by combining deep convolutional neural network and handcrafted features[J]. Phys Med Biol, 2019, 64(17): 175012.
35
Tu SJ, Wang CW, Pan KT, et al. Localized thin-section CT with radiomics feature extraction and machine learning to classify early-detected pulmonary nodules from lung cancer screening[J]. Phys Med Biol, 2018, 63(6): 65005.
36
Kaya A. Cascaded classifiers and stacking methods for classification of pulmonary nodule characteristics[J]. Comput Methods Programs Biomed, 2018, 166: 77-89.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 杨敬武, 周美君, 陈雨凡, 李素淑, 何燕妮, 崔楠, 刘红梅. 人工智能超声结合品管圈活动对低年资超声医师甲状腺结节风险评估能力的作用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 522-526.
[3] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[4] 张嘉炜, 王瑞, 张克诚, 易磊, 周增丁. 烧烫伤创面深度智能检测模型P-YOLO的建立及测试效果[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 379-385.
[5] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[6] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[7] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[8] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[9] 莫淇舟, 苏劲, 黄健, 李健维, 李思宁, 柳建军. 智能控压输尿管软镜碎石吸引取石术在直径10~25 mm上尿路结石中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 497-502.
[10] 李义亮, 苏拉依曼·牙库甫, 麦麦提艾力·麦麦提明, 克力木·阿不都热依木. 机器人与腹腔镜食管裂孔疝修补术联合Nissen 胃底折叠术短期疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 512-517.
[11] 犹成亿, 尤恒, 叶东樊, 张雯, 刘禹, 王仁宇, 苏琳茜, 甘慧, 徐智. 基于3D Res U-Net-Faster RCNN 技术和CT 影像学特征的肺结节性质预测模型的建立[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 673-679.
[12] 钱春蕊, 周燕, 张晶, 蔡笃财, 门慧, 王松海, 黎莉, 邢龙. 高分辨率CT 与多层螺旋CT 在肺结节及早期肺癌中的应用[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 827-830.
[13] 赵毅, 李昶田, 唐文博, 白雪婷, 刘荣. 腹腔镜术中超声主胰管自动识别模型的临床应用[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(05): 290-294.
[14] 王洪, 王骏华, 范建楠. 人工智能技术在肩袖损伤中的研究进展[J/OL]. 中华肩肘外科电子杂志, 2024, 12(04): 356-361.
[15] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
阅读次数
全文


摘要