切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2022, Vol. 15 ›› Issue (01): 38 -41. doi: 10.3877/cma.j.issn.1674-6902.2022.01.009

论著 上一篇    

血清miR-133a在脓毒症并发ARDS中表达及预后的关系
赵云峰 1, 徐志华 1, 巫梦娜 1, 顾维立 1 , ( )   
  1. 1. 226000 江苏,南通市第一人民医院重症医学科
  • 收稿日期:2021-10-07 出版日期:2022-02-25
  • 通信作者: 顾维立
  • 基金资助:
    江苏省自然科学基金资助项目(BK20180267); 南通市市级科技计划项目(JCZ20084); 南通大学临床医学专项项目(2019LY003)

Expression of serum miR-133a in sepsis patients with acute respiratory distress syndrome and its relationship with prognosis

Yunfeng Zhao 1, Zhihua Xu 1, Mengna Wu 1, Weili Gu 1 , ( )   

  1. 1. Department of Critical Care Medicine, Nantong First People′s Hospital, Nantong 22600, China
  • Received:2021-10-07 Published:2022-02-25
  • Corresponding author: Weili Gu
目的

分析血清微小核糖核酸(miR)-133a在脓毒症并发急性呼吸窘迫综合征(acute respiratory distress syndrome, ARDS)患者中的表达及与预后的关系。

方法

选取2019年6月至2021年5月我院收治的65例脓毒症患者,根据是否并发ARDS,分为并发ARDS 35例和无ARDS 30例。随访28 d,统计脓毒症并发ARDS者预后,检测患者入住ICU第1天、第2天、第3天血清miR-133a水平,比较存活者和死亡者临床特征,采用Logistic回归分析判定影响脓毒症并发ARDS预后的因素,采用受试者工作曲线(ROC)分析血清miR-133a水平预测脓毒症并发ARDS者预后的价值。

结果

并发ARDS入住ICU第1天、第2天、第3天血清miR-133a水平均高于无ARDS者(P<0.05);随访28 d,脓毒症并发ARDS者病死率为40.00%;死亡者入住ICU第1天、第2天、第3天血清miR-133a水平均高于存活者(P<0.05);死亡者序贯器官衰竭(SOFA)评分、血管外肺水指数、第1天血清miR-133a水平与存活者比较,差异均有统计学意义(P<0.05);Logistic多因素回归分析显示SOFA评分、第1天血清miR-133a水平均是影响脓毒症并发ARDS者死亡的危险因素(P<0.05);ROC分析显示,第1天血清miR-133a水平预测脓毒症并发ARDS者死亡的最佳截断点为1.47,灵敏度为85.71%,特异度为90.48%,AUC为0.857。

结论

脓毒症并发ARDS者血清miR-133a水平升高,血清miR-133a水平是影响脓毒症并发ARDS者死亡的危险因素,监测血清miR-133a水平变化,作为预测患者预后的指标。

Objective

To explore the expression of serum microribonucleic acid (miR)-133a in patients with sepsis and acute respiratory distress syndrome and its relationship with prognosis.

Methods

65 cases of sepsis admitted to the hospital from June 2019 to May 2021 were selected, according to whether they combined with acute respiratory distress syndrome, they were divided into concurrent group 35 and non-complicated group 30 cases. Follow-up for 28 days, the deaths of patients with sepsis combined with acute respiratory distress syndrome were counted, the serum level of miR-133a was detected on the first day, the second day, and the third day of the patient′s admission to the ICU, the clinical characteristics of the dead and surviving patients were compared, Logistic regression analysis was used to determine the factors affecting the death of patients with sepsis combined with acute respiratory distress syndrome, and receiver operating curve (ROC) was used to analyze the value of serum miR-133a level in predicting the death of patients with sepsis combined with acute respiratory distress syndrome.

Results

The serum miR-133a levels of patients with concurrent group ICU admission on day 1, 2, and 3 were higher than those of non-complicated group patients (P<0.05). After 28 days of follow-up, the mortality of patients with sepsis and acute respiratory distress syndrome was 40.00%. Serum miR-133a levels of dead patients were higher than those of surviving patients on day 1, 2, and 3 of ICU admission (P<0.05). The SOFA score, extravascular lung water index, miR-133a level on day 1 of dead patients were compared with those of surviving patients, and the differences were statistically significant (P<0.05). Logistic multivariate regression analysis showed that Sequential Organ Failure (SOFA) score and serum miR-133a level on day 1 were independent risk factors for death in patients with sepsis and acute respiratory distress syndrome (P<0.05). ROC analysis showed that the best cut-off point for serum miR-133a level on day 1 to predict the death of patients with sepsis and acute respiratory distress syndrome was1.47, the sensitivity was 85.71%, the specificity was 90.48%, and the area under the curve (AUC) was 0.857.

Conclusion

The level of serum miR-133a in patients with sepsis and acute respiratory distress syndrome is abnormally increased, and the level of serum miR-133a is an independent risk factor affecting death in patients with sepsis and acute respiratory distress syndrome, clinical monitoring of serum miR-133a level changes can be used as a sensitive indicator to predict patient death.

表1 比较两组患者入住ICU不同时相血清miR-133a水平
表2 比较患者预后临床特征
1
凡 华,张国新,李 庚. MicroRNA-155联合MicroRNA-127对急性呼吸窘迫综合征预后的意义[J/CD]. 中华肺部疾病杂志(电子版), 2021, 14(6): 760-763.
2
郭亚威,王 征,曹 涛,等. SOFA评分联合降钙素原在脓毒症中的应用价值[J]. 中国急救复苏与灾害医学杂志2020, 15(12): 1428-1431.
3
Font MD, Thyagarajan B, Khanna AK. Sepsis and septic shock-basics of diagnosis, pathophysiology and clinical decision making [J]. Med Clin North Am, 2020, 104(4): 573-585.
4
Stanski NL, Wong HR. Prognostic and predictive enrichment in sepsis[J]. Nat Rev Nephrol, 2020, 9(1): 20-31.
5
穆庆华,李 明. 急性创伤患者发生早期ARDS的危险因素分析[J]. 中国急救复苏与灾害医学杂志2020, 15(3): 319-322.
6
Yehya N, Thomas NJ. Sepsis and pediatric acute respiratory distress syndrome [J]. J Pediatr Intensive Care, 2019, 8(1): 32-41.
7
Auriemma CL, Zhuo H, Delucchi K, et al. Acute respiratory distress syndrome-attributable mortality in critically ill patients with sepsis [J]. Intensive Care Med, 2020, 46(6): 1222-1231.
8
Englert JA, Bobba C, Baron RM. Integrating molecular pathogenesis and clinical translation in sepsis-induced acute respiratory distress syndrome[J]. JCI Insight, 2019, 4(2): 124-131.
9
Zhao J, Tan Y, Wang L, et al. Discriminatory ability and prognostic evaluation of presepsin for sepsis-related acute respiratory distress syndrome [J]. Sci Rep, 2020, 10(1): 9114-9120.
10
刘士琛,王美菊,刘 刚,等. 肺炎合并低氧血症患者进展为ARDS危险因素分析[J/CD]. 中华肺部疾病杂志(电子版), 2021, 14(2): 164-168.
11
Lee LK, Medzikovic L, Eghbali M, et al. The role of MicroRNAs in acute respiratory distress syndrome and sepsis, from targets to therapies: A narrative review [J]. Anesth Analg, 2020, 131(5): 1471-1484.
12
Tian X, Li L, Fu G, et al. miR-133a-3p regulates the proliferation and apoptosis of intestinal epithelial cells by modulating the expression of TAGLN2[J]. Exp Ther Med, 2021, 22(2): 824-830.
13
中国医师协会急诊医师分会,中国研究型医院学会休克与脓毒症专业委员会,于学忠,等. 中国脓毒症/脓毒性休克急诊治疗指南(2018)[J]. 临床急诊杂志2018, 19(9): 567-588.
14
俞森洋. 对急性呼吸窘迫综合征诊断新标准(柏林定义)的解读和探讨[J]. 中国呼吸与危重监护杂志2013, 12(1): 1-4.
15
Fowler AA 3rd, Truwit JD, Hite RD, et al. Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: The CITRIS-ALI randomized clinical trial [J]. JAMA, 2019, 322(13): 1261-1270.
16
Kerchberger VE, Bastarache JA, Shaver CM, et al. Haptoglobin-2 variant increases susceptibility to acute respiratory distress syndrome during sepsis[J]. JCI Insight, 2019, 4(21): 1312-1316.
17
Li S, Zhao D, Cui J, et al. Prevalence, potential risk factors and mortality rates of acute respiratory distress syndrome in Chinese patients with sepsis[J]. J Int Med Res, 2020, 48(2): 306-314.
18
Yadav B, Bansal A, Jayashree M. Clinical profile and predictors of outcome of pediatric acute respiratory distress syndrome in a PICU: A prospective observational study [J]. Pediatr Crit Care Med, 2019, 20(6): 263-273.
19
Munshi L, Walkey A, Goligher E, et al. Venovenous extracorporeal membrane oxygenation for acute respiratory distress syndrome: a systematic review and meta-analysis [J]. Lancet Respir Med, 2019, 7(2): 163-172.
20
Wei P, Xie Y, Abel PW, et al. Transforming growth factor (TGF)-β1-induced miR-133a inhibits myofibroblast differentiation and pulmonary fibrosis[J]. Cell Death Dis, 2019, 10(9): 670-677.
21
Qin LY, Wang MX, Zhang H. MiR-133a alleviates renal injury caused by sepsis by targeting BNIP3L[J]. Eur Rev Med Pharmacol Sci, 2020, 24(5): 2632-2639.
22
Martucci G, Arcadipane A, Tuzzolino F, et al. Identification of a circulating miRNA signature to stratify acute respiratory distress syndrome patients [J]. J Pers Med, 2020, 11(1): 15-22.
23
Chen L, He X, Xie Y, et al. Up-regulated miR-133a orchestrates epithelial-mesenchymal transition of airway epithelial cells [J]. Sci Rep, 2018, 8(1): 155-159.
24
Mendes FC, Paciência I, Ferreira AC, et al. Development and validation of exhaled breath condensate microRNAs to identify and endotype asthma in children [J]. PLoS One, 2019, 14(11): 983-988.
25
Yang M, Wang LI. MALAT1 knockdown protects from bronchial/tracheal smooth muscle cell injury via regulation of microRNA-133a/ryanodine receptor 2 axis [J]. J Biosci, 2021, 46(7): 28-36.
26
薛雨晨,薛晓梅,何 斌. 微小RNA-133a和微小RNA-499a-5p在脓毒性心肌病中的诊断和预后价值[J]. 国际麻醉学与复苏杂志2019, 40(8): 759-764.
27
Shao Y, Chong L, Lin P, et al. MicroRNA-133a alleviates airway remodeling in asthtama through PI3K/AKT/mTOR signaling pathway by targeting IGF1R[J]. J Cell Physiol, 2019, 234(4): 4068-4080.
28
Chen L, Xie W, Wang L, et al. MiRNA-133a aggravates inflammatory responses in sepsis by targeting SIRT1 [J]. Int Immunopharmacol, 2020, 52(4): 229-236.
[1] 王烁, 赵萍, 李秋洋, 张颖, 宋青, 朱嘉宁, 朱连华, 罗渝昆. 超声造影定量评价脓毒症急性肾损伤肾血流灌注及其参数与炎症因子的相关性[J]. 中华医学超声杂志(电子版), 2022, 19(01): 59-65.
[2] 张易薇, 朱双双, 谢雨霁, 孙薇, 朱业, 吴纯, 李玉曼, 谢明星, 张丽. 组织运动二尖瓣环位移对新型冠状病毒肺炎患者预后的预测价值[J]. 中华医学超声杂志(电子版), 2021, 18(12): 1153-1157.
[3] 张锦鑫, 沈括, 胡大海, 尹文. 脓毒症早期诊断和治疗进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(01): 76-80.
[4] 崔良文, 郭恩强, 侯刘进, 黄帆, 彭晓春, 赵红川, 邵敏, 刘念. 影响肝移植术后机械通气时间延长的因素分析[J]. 中华普通外科学文献(电子版), 2022, 16(01): 37-41.
[5] 牛闻宇, 支永发, 张义, 马明杰, 周庆. 全腹腔镜胰十二指肠切除术的预后研究[J]. 中华普外科手术学杂志(电子版), 2022, 16(01): 87-90.
[6] 雷跃华, 陈文兴, 王邓超. 单孔加一孔与传统多孔腹腔镜用于右半结肠癌根治术的中远期随访比较[J]. 中华普外科手术学杂志(电子版), 2022, 16(01): 99-102.
[7] 刘佩杰. 双镜联合治疗胃间质瘤的预后及安全性分析[J]. 中华普外科手术学杂志(电子版), 2022, 16(01): 107-110.
[8] 钱丹, 何佳霖, 林昊, 黄其密, 刘唯佳, 赵国策, 刘玺, 高梦圆, 潘鑫涛, 任成山. 老年糖尿病患者并发新型冠状病毒肺炎预后及其相关因素分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(01): 33-37.
[9] 王雅宁, 李惜惜, 解英俊. 原发免疫性血小板减少症脾切除术疗效评估和预测指标[J]. 中华肝脏外科手术学电子杂志, 2022, 11(01): 9-12.
[10] 崔婷, 王瑞涛, 张月浪, 侯惠莲, 李晨霞, 李香, 仝聪. 原发性肝血管肉瘤临床病理特征及文献回顾[J]. 中华肝脏外科手术学电子杂志, 2022, 11(01): 76-81.
[11] 杨洲, 叶林森, 冯啸, 谢云亮, 李晓斌, 傅斌生. 生物信息学分析TP53基因在肝癌中的表达及其对预后的影响[J]. 中华肝脏外科手术学电子杂志, 2022, 11(01): 87-91.
[12] 余鹏飞, 麦兴进, 符树强, 苏保寿, 吴益敏, 喻闻庆. 血清sTREM-1、IL-12及IL-33水平对创伤性脑损伤严重程度和预后评估的价值[J]. 中华神经创伤外科电子杂志, 2022, 08(01): 18-22.
[13] 吴艺, 曹月洲, 贾振宇, 赵林波, 刘圣, 施海彬. 左室收缩功能障碍与6~24 h内接受机械取栓的急性缺血性脑卒中患者不良预后相关[J]. 中华介入放射学电子杂志, 2022, 10(01): 16-21.
[14] 陈正文, 李沛城, 陈珑, 刘一之, 李波, 袁晨, 侯凯文. 后循环急性缺血性脑卒中患者经机械取栓完全复流后不良预后的影响因素分析[J]. 中华介入放射学电子杂志, 2022, 10(01): 22-26.
[15] 豆仁成, 江萍, 程书欢, 娄燕. 新生儿化脓性脑膜炎近期预后不良原因分析[J]. 中华诊断学电子杂志, 2022, 10(01): 15-20.
阅读次数
全文


摘要