切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2022, Vol. 15 ›› Issue (02) : 276 -278. doi: 10.3877/cma.j.issn.1674-6902.2022.02.038

综述

环状RNA在肺动脉高压发病机制中的研究进展
杨益1, 黄秋红1, 尤再春1,()   
  1. 1. 400037 重庆,陆军(第三)军医大学第二附属医院全科医学科
  • 收稿日期:2021-10-05 出版日期:2022-04-25
  • 通信作者: 尤再春
  • 基金资助:
    国家自然科学基金资助项目(81873413); 重庆市自然科学基金(cstc2018jcyjAX0098)

Research progress of circrnas in the pathogenesis of pulmonary hypertension

Yi Yang1, Qiuhong Huang1, Zaichun You1()   

  • Received:2021-10-05 Published:2022-04-25
  • Corresponding author: Zaichun You
引用本文:

杨益, 黄秋红, 尤再春. 环状RNA在肺动脉高压发病机制中的研究进展[J]. 中华肺部疾病杂志(电子版), 2022, 15(02): 276-278.

Yi Yang, Qiuhong Huang, Zaichun You. Research progress of circrnas in the pathogenesis of pulmonary hypertension[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2022, 15(02): 276-278.

1
Hoeper MM, Humbert M, Souza R, et al. A global view of pulmonary hypertension[J]. Lancet Respir Med, 2016, 4(4): 306-322.
2
Sommer N, Ghofrani H A, Pak O, et al. Current and future treatments of pulmonary arterial hypertension[J]. Br J Pharmacol, 2021, 178(1): 6-30.
3
Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013, 19(2): 141-157.
4
Verduci L, Tarcitano E, Strano S, et al. CircRNAs: role in human diseases and potential use as biomarkers[J]. Cell Death Dis, 2021, 12(5): 1-12.
5
Kelly S, Greenman C, Cook PR, et al. Exon skipping is correlated with exon circularization[J]. J Mol Biol, 2015, 427(15): 2414-2417.
6
Ma S, Kong S, Wang F, et al. CircRNAs: biogenesis, functions, and role in drug-resistant Tumours[J]. Mol Cancer, 2020, 19(1): 1-19.
7
Eidem TM, Kugel JF, Goodrich JA. Noncoding RNAs: regulators of the mammalian transcription machinery[J]. J Mol Biol, 2016, 428(12): 2652-2659.
8
Liang ZZ, Guo C, Zou MM, et al. CircRNA-miRNA-mRNA regulatory network in human lung cancer: an update[J]. Cancer Cell Int, 2020, 20(1): 1-16.
9
Kramer MC, Liang D, Tatomer DC, et al. Combinatorial control of drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins[J]. Genes Dev, 2015, 29(20): 2168-2182.
10
Aktas T, Avsar Ilik I, Maticzka D, et al. DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome[J]. Nature, 2017, 544(7648): 115-119.
11
Rong D, Sun H, Li Z, et al. An emerging function of circRNA-miRNAs-mRNA axis in human diseases[J]. Oncotarget, 2017, 8(42): 73271-73281.
12
Chen LL. The expanding regulatory mechanisms and cellular functions of circular RNAs[J]. Nat Rev Mol Cell Biol, 2020, 21(8): 475-490.
13
Huang A, Zheng H, Wu Z, et al. Circular RNA-protein interactions:functions, mechanisms, and identification[J]. Theranostics, 2020, 10(8): 3503-3517.
14
Zang J, Lu D, Xu A. The interaction of circRNAs and RNA binding proteins: An important part of circRNA maintenance and function[J]. J Neurosci Res, 2020, 98(1): 87-97.
15
Shi Y, Jia X, Xu J. The new function of circRNA: translation[J]. Clin Transl Oncol, 2020, 22(12): 2162-2169.
16
Southgate L, Machado RD, Graf S, et al. Molecular genetic framework underlying pulmonary arterial hypertension[J]. Nat Rev Cardiol, 2020, 17(2): 85-95.
17
Li R, Jiang J, Shi H, et al. CircRNA: a rising star in gastric cancer[J]. Cell Mol Life Sci, 2020, 77(9): 1661-1680.
18
Zaiou M. CircRNAs signature as potential diagnostic and prognostic biomarker for diabetes mellitus and related cardiovascular complications[J]. Cells, 2020, 9(3):1-19.
19
Wang J, Zhao X, Wang Y, et al. CircRNA-002178 act as a ceRNA to promote PDL1/PD1 expression in lung adenocarcinoma[J]. Cell Death Dis, 2020, 11(1): 1-11.
20
Wang Y, Zhao R, Liu W, et al. Exosomal circHIPK3 released from hypoxia-pretreated cardiomyocytes regulates oxidative damage in cardiac microvascular endothelial cells via the miR-29a/IGF-1 pathway[J]. Oxid Med Cell Longev, 2019, 2019: 7954657.
21
Zhang J, Li Y, Qi J, et al. Circ-calm4 Serves as an miR-337-3p sponge to regulate Myo10 (Myosin 10) and promote pulmonary artery smooth muscle proliferation[J]. Hypertension, 2020, 75(3): 668-679.
22
Yang L, Liang H, Meng X, et al. Mmu_circ_0000790 is involved in pulmonary vascular remodeling in mice with HPH via microRNA-374c-mediated FOXC1[J]. Mol Ther Nucleic Acids, 2020, 20: 292-307.
23
Wang J, Zhu MC, Kalionis B, et al. Characteristics of circular RNA expression in lung tissues from mice with hypoxiainduced pulmonary hypertension[J]. Int J Mol Med, 2018, 42(3): 1353-1366.
24
Zhou S, Jiang H, Li M, et al. Circular RNA hsa_circ_0016070 is Associated with pulmonary arterial hypertension by promoting PASMC proliferation[J]. Mol Ther Nucleic Acids, 2019, 18: 275-284.
25
Jin X, Xu Y, Guo M, et al. Hsa_circNFXL1_009 modulates apoptosis, proliferation, migration, and potassium channel activation in pulmonary hypertension[J]. Mol Ther Nucleic Acids, 2021, 23: 1007-1019.
26
Ma C, Gu R, Wang X, et al. CircRNA CDR1as promotes pulmonary artery smooth muscle cell calcification by upregulating CAMK2D and CNN3 via sponging miR-7-5p[J]. Mol Ther Nucleic Acids, 2020, 22: 530-541.
27
Li Y, Zheng Q, Bao C, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis[J]. Cell Res, 2015, 25(8): 981-984.
28
Guo J, Zhang L, Lian L, et al. CircATP2B4 promotes hypoxia-induced proliferation and migration of pulmonary arterial smooth muscle cells via the miR-223/ATR axis[J]. Life sciences, 2020, 262: 1-9.
29
Miao R, Gong J, Zhang C, et al. Hsa_circ_0046159 is involved in the development of chronic thromboembolic pulmonary hypertension[J]. J Thromb Thrombolysis, 2020, 49(3): 386-394.
30
Dang RY, Liu FL, Li Y. Circular RNA hsa_circ_0010729 regulates vascular endothelial cell proliferation and apoptosis by targeting the miR-186/HIF-1alpha axis[J]. Biochem Biophys Res Commun, 2017, 490(2): 104-110.
31
Hong L, Ma X, Liu J, et al. Circular RNA-HIPK3 regulates human pulmonary artery endothelial cells function and vessel growth by regulating microRNA-328-3p/STAT3 axis[J]. Pulm Circ, 2021, 11(2): 1-11.
32
Liu W, Wang Y, Qiu Z, et al. CircHIPK3 regulates cardiac fibroblast proliferation, migration and phenotypic switching through the miR-152-3p/TGF-beta2 axis under hypoxia[J]. PeerJ, 2020, 8: 1-19.
33
Shan K, Liu C, Liu B H, et al. Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus[J]. Circulation, 2017, 136(17): 1629-1642.
34
Li Q, Tian Y, Liang Y, et al. CircHIPK3/miR-876-5p/PIK3R1 axis regulates regulation proliferation, migration, invasion, and glutaminolysis in gastric cancer cells[J]. Cancer Cell Int, 2020, 20: 1-12.
[1] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[2] 罗丹, 孔为民, 陈姝宁, 赵小玲, 谢云凯. 子宫内膜异位症患者在位及异位内膜上皮细胞-间充质转化相关生物标志物的变化[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 530-539.
[3] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[4] 李越洲, 张孔玺, 李小红, 商中华. 基于生物信息学分析胃癌中PUM的预后意义[J]. 中华普通外科学文献(电子版), 2023, 17(06): 426-432.
[5] 李腾成, 狄金明. 2023 V1版前列腺癌NCCN指南更新要点解读[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 313-318.
[6] 代芬, 卞士柱. 无创机械通气联合肺康复在肺动脉高压呼吸衰竭治疗中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 560-562.
[7] 杜静怡, 徐兴祥. 循环肿瘤细胞在非小细胞肺癌中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 596-600.
[8] 陈坤, 何傅梅, 方婷, 陈文瑞. 血清sCD73与EGFR/ALK野生型非小细胞肺癌免疫治疗效果的相关性分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 504-507.
[9] 李丹阳, 李满祥. 肠道菌群失调在肺动脉高压发病中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 432-434.
[10] 陈安, 冯娟, 杨振宇, 杜锡林, 柏强善, 阴继凯, 臧莉, 鲁建国. 基于生物信息学分析CCN4在肝细胞癌中表达及其临床意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 702-707.
[11] 吴蓉菊, 向平超. COPD频繁急性加重表型与炎性因子相关性研究[J]. 中华临床医师杂志(电子版), 2023, 17(9): 939-947.
[12] 余林阳, 王美英, 李建斌, 楼骁斌, 谢思远, 马志忠, 齐海英, 李稼. 高原地区肺炎合并右心功能衰竭体征患儿的肺动脉压力和心脏形态与功能的特征[J]. 中华临床医师杂志(电子版), 2023, 17(05): 535-544.
[13] 蔡荇, 郑瑞强. 肝素结合蛋白在脓毒症中的应用及研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 487-490.
[14] 王金志, 陶新曹, 谢万木, 傅志辉, 赵蕴伟, 黄强, 翟振国. 球囊肺动脉成形术在慢性血栓栓塞性肺动脉高压治疗中的进展[J]. 中华介入放射学电子杂志, 2023, 11(03): 262-267.
[15] 郭芳芳, 李珉珉. 狼疮肾炎无创生物标志物的研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 271-275.
阅读次数
全文


摘要