切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2022, Vol. 15 ›› Issue (02) : 279 -282. doi: 10.3877/cma.j.issn.1674-6902.2022.02.039

综述

间充质干细胞及其胞外囊泡来源的miRNA免疫调节作用研究进展
赵家莹1, 王剑2,(), 阳韬2,()   
  1. 1. 212000 镇江,江苏大学医学院
    2. 212002 镇江,江苏大学附属人民医院,镇江市第一人民医院呼吸及危重症学科
  • 收稿日期:2021-08-13 出版日期:2022-04-25
  • 通信作者: 王剑, 阳韬
  • 基金资助:
    镇江市社会发展重大项目(SH2020047); 镇江市社会发展指导项目(FZ2019026)

Advances in immunomodulatory Effects of miRNA derived from Mesenchymal stem cells and their extracellular vesicles

Jiaying Zhao1, Jian Wang2(), Tao Yang2()   

  • Received:2021-08-13 Published:2022-04-25
  • Corresponding author: Jian Wang, Tao Yang
引用本文:

赵家莹, 王剑, 阳韬. 间充质干细胞及其胞外囊泡来源的miRNA免疫调节作用研究进展[J]. 中华肺部疾病杂志(电子版), 2022, 15(02): 279-282.

Jiaying Zhao, Jian Wang, Tao Yang. Advances in immunomodulatory Effects of miRNA derived from Mesenchymal stem cells and their extracellular vesicles[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2022, 15(02): 279-282.

1
Tang WY, Liu JH, Peng CJ, et al. Functional characteristics and application of mesenchymal stem cells in systemic lupus erythematosus[J]. Arch ImmunolTherExp (Warsz), 2021, 69(1): 7.
2
Najar M, Martel-Pelletier J, Pelletier JP, et al. Mesenchymal stromal cell immunology for efficient and safe treatment of osteoarthritis[J]. Front Cell Dev Biol, 2020, 8: 567813.
3
Campo A, González-Ruiz JM, Andreu E, et al. Endobronchial autologous bone marrow-mesenchymal stromal cells in idiopathic pulmonary fibrosis: a phase I trial[J]. ERJ Open Res, 2021, 7(2): 00773-2020.
4
Dos Santos CC, Amatullah H, Vaswani CM, et al. Mesenchymal stromal (stem) cell (MSC) therapy modulates miR-193b-5p expression to attenuate sepsis-induced acute lung injury[J]. EurRespir J, 2021, 10: 2004216.
5
ElowssonRendin L, Löfdahl A, Kadefors M, et al. Harnessing the ECM microenvironment to ameliorate mesenchymal stromal cell-based therapy in chronic lung diseases[J]. Front Pharmacol, 2021, 12: 645558.
6
Chen-Yoshikawa TF. Ischemia-reperfusion injury in lung transplantation[J]. Cells, 2021, 10(6): 1333.
7
Liu Y, Su YY, Yang Q, et al. Stem cells in the treatment of renal fibrosis: a review of preclinical and clinical studies of renal fibrosis pathogenesis[J]. Stem Cell Res Ther, 2021, 12(1): 333.
8
Zhang J, Gao J, Lin D, et al. Potential networks regulated by MSCs in acute-on-chronic liver failure: Exosomal miRNAs and intracellular target genes[J]. Front Genet, 2021, 12: 650536.
9
Janockova J, Slovinska L, Harvanova D, et al. New therapeutic approaches of mesenchymal stem cells-derived exosomes[J]. J Biomed Sci, 2021, 28(1): 39.
10
Escobar-Soto CH, Mejia-Romero R, Aguilera N, et al. Human mesenchymal stem cells for the management of systemic sclerosis. Systematic review[J]. Autoimmun Rev, 2021, 20(6): 102831.
11
Heidari N, Abbasi-Kenarsari H, Namaki S, et al. Adipose-derived mesenchymal stem cell-secreted exosome alleviates dextran sulfate sodium-induced acute colitis by Treg cell induction and inflammatory cytokine reduction[J]. J Cell Physiol, 2021, 236(8): 5906-5920.
12
Qiu G, Zheng G, Ge M, et al. Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs[J]. Stem Cell Res Ther, 2018, 9(1): 320.
13
Shao H, Im H, Castro CM, et al. New Technologies for analysis of extracellular vesicles[J]. Chem Rev, 2018, 118(4): 1917-1950.
14
Pegtel DM, Gould SJ. Exosomes[J]. Annu Rev Biochem, 2019, 88: 487-514.
15
Cai Q, He B, Wang S, et al. Message in a bubble: shuttling small RNAs and proteins between cells and interacting organisms using extracellular vesicles[J]. Annu Rev Plant Biol, 2021, 72: 497-524.
16
Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20(11): 675-691.
17
Pers YM, Maumus M, Bony C, et al. Contribution of microRNAs to the immunosuppressive function of mesenchymal stem cells [J]. Biochimie, 2018, 155: 109-118.
18
Racchetti G, Meldolesi J. Extracellular vesicles of mesenchymal stem cells: therapeutic properties discovered with extraordinary success[J]. Biomedicines, 2021, 9(6): 667.
19
de Witte SFH, Luk F, Sierra Parraga JM, et al. Immunomodulation by therapeutic mesenchymal stromal cells (MSC) is triggered through phagocytosis of MSC by monocytic cells[J]. Stem Cells, 2018, 36(4): 602-615.
20
Zhao J, Li X, Hu J, et al. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization[J]. Cardiovasc Res, 2019, 115(7): 1205-1216.
21
Li X, Liu L, Yang J, et al. Exosome derived from human umbilical cord mesenchymal stem cell mediates MiR-181c attenuating burn-induced excessive inflammation[J]. EBioMedicine, 2016, 8: 72-82.
22
Yao M, Cui B, Zhang W, et al. Exosomal miR-21 secreted by IL-1β-primed-mesenchymal stem cells induces macrophage M2 polarization and ameliorates sepsis[J]. Life Sci, 2021, 264: 118658.
23
Ti D, Hao H, Tong C, et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b[J]. J Transl Med, 2015, 13: 308.
24
Song Y, Dou H, Li X, et al. Exosomal miR-146a contributes to the enhanced therapeutic efficacy of interleukin-1β-primed mesenchymal stem cells against sepsis[J]. Stem Cells, 2017, 35(5): 1208-1221.
25
Zhao G, Miao H, Li X, et al. TGF-β3-induced miR-494 inhibits macrophage polarization via suppressing PGE2 secretion in mesenchymal stem cells[J]. FEBS Lett, 2016, 590(11): 1602-1613.
26
Zhao X, Liu D, Gong W, et al. The toll-like receptor 3 ligand, poly(I:C), improves immunosuppressive function and therapeutic effect of mesenchymal stem cells on sepsis via inhibiting MiR-143[J]. Stem Cells, 2014, 32(2): 521-33.
27
Hsu LW, Huang KT, Nakano T, et al. MicroRNA-301a inhibition enhances the immunomodulatory functions of adipose-derived mesenchymal stem cells by induction of macrophage M2 polarization[J]. Int J Immunopathol Pharmacol, 2020, 34: 2058738420966092.
28
Müller L, Tunger A, Wobus M, et al. Immunomodulatory properties of mesenchymal stromal cells: an update[J]. Front Cell Dev Biol, 2021, 9: 637725.
29
Wu J, Ji C, Cao F, et al. Bone marrow mesenchymal stem cells inhibit dendritic cells differentiation and maturation by microRNA-23b[J]. Biosci Rep, 2017, 37(2): BSR20160436.
30
Yu Y, Liao L, Shao B, et al. Knockdown of microRNA let-7a improves the functionality of bone marrow-derived mesenchymal stem cells in immunotherapy[J]. MolTher, 2017, 25(2): 480-493.
31
Wu T, Liu Y, Fan Z, et al. miR-21 Modulates the immunoregulatory function of bone marrow mesenchymal stem cells through the PTEN/Akt/TGF-β1 pathway[J]. Stem Cells, 2015, 33(11): 3281-3290.
32
Hu E, Ding L, Miao H, et al. MiR-30a attenuates immunosuppressive functions of IL-1β-elicited mesenchymal stem cells via targeting TAB3[J]. FEBS Lett, 2015, 589(24 Pt B): 3899-3907.
33
Cho S, Wu CJ, Yasuda T, et al. miR-23~27~24 clusters control effector T cell differentiation and function[J]. J Exp Med, 2016, 213(2): 235-249.
34
Morel PA, Butterfield LH. Dendritic cell control of immune responses[J]. Front Immunol, 2015, 6: 42.
35
Zhou H, Wu L. The development and function of dendritic cell populations and their regulation by miRNAs[J]. Protein Cell, 2017, 8(7): 501-513.
36
Reis M, Mavin E, Nicholson L, et al. Mesenchymal stromal cell-derived extracellular vesicles attenuate dendritic cell maturation and function[J]. Front Immunol, 2018, 9: 2538.
37
Pesce S, Greppi M, Ferretti E, et al. miRNAs in NK cell-based immune responses and cancer immunotherapy[J]. Front Cell Dev Biol, 2020, 8: 119.
38
Mi QS, Wang J, Liu Q, et al. microRNA dynamic expression regulates invariant NKT cells[J]. Cell Mol Life Sci, 2021, doi: 10.1007/s00018-021-03895-7.
39
Sullivan RP, Fogel LA, Leong JW, et al. MicroRNA-155 tunes both the threshold and extent of NK cell activation via targeting of multiple signaling pathways[J]. J Immunol, 2013, 191(12): 5904-5013.
40
Komabayashi Y, Kishibe K, Nagato T, et al. Downregulation of miR-15a due to LMP1 promotes cell proliferation and predicts poor prognosis in nasal NK/T-cell lymphoma[J]. Am J Hematol, 2014, 89(1): 25-33.
41
Chen HH, Huang WT, Yang LW, et al. The PTEN-AKT-mTOR/RICTOR Pathway in Nasal Natural Killer Cell Lymphoma Is Activated by miR-494-3p via PTEN But Inhibited by miR-142-3p via RICTOR[J]. Am J Pathol, 2015, 185(5): 1487-1499.
[1] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[2] 王邦郁, 陈晓鹏, 唐国军, 王佳妮. 尿液细胞外囊泡circRNA分类器对高级别前列腺癌诊断价值的初步研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 339-342.
[3] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[4] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[5] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[6] 刘小燕, 龙乾发, 席俊秀, 杜明皓, 黄晓欢. 细胞外囊泡介导的胶质细胞交互作用对神经炎症的调节意义及研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 235-241.
[7] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[8] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[9] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[10] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[11] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[12] 陈客宏. 干细胞外泌体防治腹膜透析腹膜纤维化新技术研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 180-180.
[13] 孙昕, 程海波, 沈卫星. 基于全转录组学探讨仙连解毒方治疗Ⅲ期结直肠癌患者的疗效机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 277-283.
[14] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
[15] 郭芳芳, 李珉珉. 狼疮肾炎无创生物标志物的研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 271-275.
阅读次数
全文


摘要