1 |
Tang WY, Liu JH, Peng CJ, et al. Functional characteristics and application of mesenchymal stem cells in systemic lupus erythematosus[J]. Arch ImmunolTherExp (Warsz), 2021, 69(1): 7.
|
2 |
Najar M, Martel-Pelletier J, Pelletier JP, et al. Mesenchymal stromal cell immunology for efficient and safe treatment of osteoarthritis[J]. Front Cell Dev Biol, 2020, 8: 567813.
|
3 |
Campo A, González-Ruiz JM, Andreu E, et al. Endobronchial autologous bone marrow-mesenchymal stromal cells in idiopathic pulmonary fibrosis: a phase I trial[J]. ERJ Open Res, 2021, 7(2): 00773-2020.
|
4 |
Dos Santos CC, Amatullah H, Vaswani CM, et al. Mesenchymal stromal (stem) cell (MSC) therapy modulates miR-193b-5p expression to attenuate sepsis-induced acute lung injury[J]. EurRespir J, 2021, 10: 2004216.
|
5 |
ElowssonRendin L, Löfdahl A, Kadefors M, et al. Harnessing the ECM microenvironment to ameliorate mesenchymal stromal cell-based therapy in chronic lung diseases[J]. Front Pharmacol, 2021, 12: 645558.
|
6 |
Chen-Yoshikawa TF. Ischemia-reperfusion injury in lung transplantation[J]. Cells, 2021, 10(6): 1333.
|
7 |
Liu Y, Su YY, Yang Q, et al. Stem cells in the treatment of renal fibrosis: a review of preclinical and clinical studies of renal fibrosis pathogenesis[J]. Stem Cell Res Ther, 2021, 12(1): 333.
|
8 |
Zhang J, Gao J, Lin D, et al. Potential networks regulated by MSCs in acute-on-chronic liver failure: Exosomal miRNAs and intracellular target genes[J]. Front Genet, 2021, 12: 650536.
|
9 |
Janockova J, Slovinska L, Harvanova D, et al. New therapeutic approaches of mesenchymal stem cells-derived exosomes[J]. J Biomed Sci, 2021, 28(1): 39.
|
10 |
Escobar-Soto CH, Mejia-Romero R, Aguilera N, et al. Human mesenchymal stem cells for the management of systemic sclerosis. Systematic review[J]. Autoimmun Rev, 2021, 20(6): 102831.
|
11 |
Heidari N, Abbasi-Kenarsari H, Namaki S, et al. Adipose-derived mesenchymal stem cell-secreted exosome alleviates dextran sulfate sodium-induced acute colitis by Treg cell induction and inflammatory cytokine reduction[J]. J Cell Physiol, 2021, 236(8): 5906-5920.
|
12 |
Qiu G, Zheng G, Ge M, et al. Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs[J]. Stem Cell Res Ther, 2018, 9(1): 320.
|
13 |
Shao H, Im H, Castro CM, et al. New Technologies for analysis of extracellular vesicles[J]. Chem Rev, 2018, 118(4): 1917-1950.
|
14 |
Pegtel DM, Gould SJ. Exosomes[J]. Annu Rev Biochem, 2019, 88: 487-514.
|
15 |
Cai Q, He B, Wang S, et al. Message in a bubble: shuttling small RNAs and proteins between cells and interacting organisms using extracellular vesicles[J]. Annu Rev Plant Biol, 2021, 72: 497-524.
|
16 |
Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20(11): 675-691.
|
17 |
Pers YM, Maumus M, Bony C, et al. Contribution of microRNAs to the immunosuppressive function of mesenchymal stem cells [J]. Biochimie, 2018, 155: 109-118.
|
18 |
Racchetti G, Meldolesi J. Extracellular vesicles of mesenchymal stem cells: therapeutic properties discovered with extraordinary success[J]. Biomedicines, 2021, 9(6): 667.
|
19 |
de Witte SFH, Luk F, Sierra Parraga JM, et al. Immunomodulation by therapeutic mesenchymal stromal cells (MSC) is triggered through phagocytosis of MSC by monocytic cells[J]. Stem Cells, 2018, 36(4): 602-615.
|
20 |
Zhao J, Li X, Hu J, et al. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization[J]. Cardiovasc Res, 2019, 115(7): 1205-1216.
|
21 |
Li X, Liu L, Yang J, et al. Exosome derived from human umbilical cord mesenchymal stem cell mediates MiR-181c attenuating burn-induced excessive inflammation[J]. EBioMedicine, 2016, 8: 72-82.
|
22 |
Yao M, Cui B, Zhang W, et al. Exosomal miR-21 secreted by IL-1β-primed-mesenchymal stem cells induces macrophage M2 polarization and ameliorates sepsis[J]. Life Sci, 2021, 264: 118658.
|
23 |
Ti D, Hao H, Tong C, et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b[J]. J Transl Med, 2015, 13: 308.
|
24 |
Song Y, Dou H, Li X, et al. Exosomal miR-146a contributes to the enhanced therapeutic efficacy of interleukin-1β-primed mesenchymal stem cells against sepsis[J]. Stem Cells, 2017, 35(5): 1208-1221.
|
25 |
Zhao G, Miao H, Li X, et al. TGF-β3-induced miR-494 inhibits macrophage polarization via suppressing PGE2 secretion in mesenchymal stem cells[J]. FEBS Lett, 2016, 590(11): 1602-1613.
|
26 |
Zhao X, Liu D, Gong W, et al. The toll-like receptor 3 ligand, poly(I:C), improves immunosuppressive function and therapeutic effect of mesenchymal stem cells on sepsis via inhibiting MiR-143[J]. Stem Cells, 2014, 32(2): 521-33.
|
27 |
Hsu LW, Huang KT, Nakano T, et al. MicroRNA-301a inhibition enhances the immunomodulatory functions of adipose-derived mesenchymal stem cells by induction of macrophage M2 polarization[J]. Int J Immunopathol Pharmacol, 2020, 34: 2058738420966092.
|
28 |
Müller L, Tunger A, Wobus M, et al. Immunomodulatory properties of mesenchymal stromal cells: an update[J]. Front Cell Dev Biol, 2021, 9: 637725.
|
29 |
Wu J, Ji C, Cao F, et al. Bone marrow mesenchymal stem cells inhibit dendritic cells differentiation and maturation by microRNA-23b[J]. Biosci Rep, 2017, 37(2): BSR20160436.
|
30 |
Yu Y, Liao L, Shao B, et al. Knockdown of microRNA let-7a improves the functionality of bone marrow-derived mesenchymal stem cells in immunotherapy[J]. MolTher, 2017, 25(2): 480-493.
|
31 |
Wu T, Liu Y, Fan Z, et al. miR-21 Modulates the immunoregulatory function of bone marrow mesenchymal stem cells through the PTEN/Akt/TGF-β1 pathway[J]. Stem Cells, 2015, 33(11): 3281-3290.
|
32 |
Hu E, Ding L, Miao H, et al. MiR-30a attenuates immunosuppressive functions of IL-1β-elicited mesenchymal stem cells via targeting TAB3[J]. FEBS Lett, 2015, 589(24 Pt B): 3899-3907.
|
33 |
Cho S, Wu CJ, Yasuda T, et al. miR-23~27~24 clusters control effector T cell differentiation and function[J]. J Exp Med, 2016, 213(2): 235-249.
|
34 |
Morel PA, Butterfield LH. Dendritic cell control of immune responses[J]. Front Immunol, 2015, 6: 42.
|
35 |
Zhou H, Wu L. The development and function of dendritic cell populations and their regulation by miRNAs[J]. Protein Cell, 2017, 8(7): 501-513.
|
36 |
Reis M, Mavin E, Nicholson L, et al. Mesenchymal stromal cell-derived extracellular vesicles attenuate dendritic cell maturation and function[J]. Front Immunol, 2018, 9: 2538.
|
37 |
Pesce S, Greppi M, Ferretti E, et al. miRNAs in NK cell-based immune responses and cancer immunotherapy[J]. Front Cell Dev Biol, 2020, 8: 119.
|
38 |
Mi QS, Wang J, Liu Q, et al. microRNA dynamic expression regulates invariant NKT cells[J]. Cell Mol Life Sci, 2021, doi: 10.1007/s00018-021-03895-7.
|
39 |
Sullivan RP, Fogel LA, Leong JW, et al. MicroRNA-155 tunes both the threshold and extent of NK cell activation via targeting of multiple signaling pathways[J]. J Immunol, 2013, 191(12): 5904-5013.
|
40 |
Komabayashi Y, Kishibe K, Nagato T, et al. Downregulation of miR-15a due to LMP1 promotes cell proliferation and predicts poor prognosis in nasal NK/T-cell lymphoma[J]. Am J Hematol, 2014, 89(1): 25-33.
|
41 |
Chen HH, Huang WT, Yang LW, et al. The PTEN-AKT-mTOR/RICTOR Pathway in Nasal Natural Killer Cell Lymphoma Is Activated by miR-494-3p via PTEN But Inhibited by miR-142-3p via RICTOR[J]. Am J Pathol, 2015, 185(5): 1487-1499.
|