切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2022, Vol. 15 ›› Issue (02) : 279 -282. doi: 10.3877/cma.j.issn.1674-6902.2022.02.039

综述

间充质干细胞及其胞外囊泡来源的miRNA免疫调节作用研究进展
赵家莹1, 王剑2,(), 阳韬2,()   
  1. 1. 212000 镇江,江苏大学医学院
    2. 212002 镇江,江苏大学附属人民医院,镇江市第一人民医院呼吸及危重症学科
  • 收稿日期:2021-08-13 出版日期:2022-04-25
  • 通信作者: 王剑, 阳韬
  • 基金资助:
    镇江市社会发展重大项目(SH2020047); 镇江市社会发展指导项目(FZ2019026)

Advances in immunomodulatory Effects of miRNA derived from Mesenchymal stem cells and their extracellular vesicles

Jiaying Zhao1, Jian Wang2(), Tao Yang2()   

  • Received:2021-08-13 Published:2022-04-25
  • Corresponding author: Jian Wang, Tao Yang
引用本文:

赵家莹, 王剑, 阳韬. 间充质干细胞及其胞外囊泡来源的miRNA免疫调节作用研究进展[J]. 中华肺部疾病杂志(电子版), 2022, 15(02): 279-282.

Jiaying Zhao, Jian Wang, Tao Yang. Advances in immunomodulatory Effects of miRNA derived from Mesenchymal stem cells and their extracellular vesicles[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2022, 15(02): 279-282.

1
Tang WY, Liu JH, Peng CJ, et al. Functional characteristics and application of mesenchymal stem cells in systemic lupus erythematosus[J]. Arch ImmunolTherExp (Warsz), 2021, 69(1): 7.
2
Najar M, Martel-Pelletier J, Pelletier JP, et al. Mesenchymal stromal cell immunology for efficient and safe treatment of osteoarthritis[J]. Front Cell Dev Biol, 2020, 8: 567813.
3
Campo A, González-Ruiz JM, Andreu E, et al. Endobronchial autologous bone marrow-mesenchymal stromal cells in idiopathic pulmonary fibrosis: a phase I trial[J]. ERJ Open Res, 2021, 7(2): 00773-2020.
4
Dos Santos CC, Amatullah H, Vaswani CM, et al. Mesenchymal stromal (stem) cell (MSC) therapy modulates miR-193b-5p expression to attenuate sepsis-induced acute lung injury[J]. EurRespir J, 2021, 10: 2004216.
5
ElowssonRendin L, Löfdahl A, Kadefors M, et al. Harnessing the ECM microenvironment to ameliorate mesenchymal stromal cell-based therapy in chronic lung diseases[J]. Front Pharmacol, 2021, 12: 645558.
6
Chen-Yoshikawa TF. Ischemia-reperfusion injury in lung transplantation[J]. Cells, 2021, 10(6): 1333.
7
Liu Y, Su YY, Yang Q, et al. Stem cells in the treatment of renal fibrosis: a review of preclinical and clinical studies of renal fibrosis pathogenesis[J]. Stem Cell Res Ther, 2021, 12(1): 333.
8
Zhang J, Gao J, Lin D, et al. Potential networks regulated by MSCs in acute-on-chronic liver failure: Exosomal miRNAs and intracellular target genes[J]. Front Genet, 2021, 12: 650536.
9
Janockova J, Slovinska L, Harvanova D, et al. New therapeutic approaches of mesenchymal stem cells-derived exosomes[J]. J Biomed Sci, 2021, 28(1): 39.
10
Escobar-Soto CH, Mejia-Romero R, Aguilera N, et al. Human mesenchymal stem cells for the management of systemic sclerosis. Systematic review[J]. Autoimmun Rev, 2021, 20(6): 102831.
11
Heidari N, Abbasi-Kenarsari H, Namaki S, et al. Adipose-derived mesenchymal stem cell-secreted exosome alleviates dextran sulfate sodium-induced acute colitis by Treg cell induction and inflammatory cytokine reduction[J]. J Cell Physiol, 2021, 236(8): 5906-5920.
12
Qiu G, Zheng G, Ge M, et al. Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs[J]. Stem Cell Res Ther, 2018, 9(1): 320.
13
Shao H, Im H, Castro CM, et al. New Technologies for analysis of extracellular vesicles[J]. Chem Rev, 2018, 118(4): 1917-1950.
14
Pegtel DM, Gould SJ. Exosomes[J]. Annu Rev Biochem, 2019, 88: 487-514.
15
Cai Q, He B, Wang S, et al. Message in a bubble: shuttling small RNAs and proteins between cells and interacting organisms using extracellular vesicles[J]. Annu Rev Plant Biol, 2021, 72: 497-524.
16
Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20(11): 675-691.
17
Pers YM, Maumus M, Bony C, et al. Contribution of microRNAs to the immunosuppressive function of mesenchymal stem cells [J]. Biochimie, 2018, 155: 109-118.
18
Racchetti G, Meldolesi J. Extracellular vesicles of mesenchymal stem cells: therapeutic properties discovered with extraordinary success[J]. Biomedicines, 2021, 9(6): 667.
19
de Witte SFH, Luk F, Sierra Parraga JM, et al. Immunomodulation by therapeutic mesenchymal stromal cells (MSC) is triggered through phagocytosis of MSC by monocytic cells[J]. Stem Cells, 2018, 36(4): 602-615.
20
Zhao J, Li X, Hu J, et al. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization[J]. Cardiovasc Res, 2019, 115(7): 1205-1216.
21
Li X, Liu L, Yang J, et al. Exosome derived from human umbilical cord mesenchymal stem cell mediates MiR-181c attenuating burn-induced excessive inflammation[J]. EBioMedicine, 2016, 8: 72-82.
22
Yao M, Cui B, Zhang W, et al. Exosomal miR-21 secreted by IL-1β-primed-mesenchymal stem cells induces macrophage M2 polarization and ameliorates sepsis[J]. Life Sci, 2021, 264: 118658.
23
Ti D, Hao H, Tong C, et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b[J]. J Transl Med, 2015, 13: 308.
24
Song Y, Dou H, Li X, et al. Exosomal miR-146a contributes to the enhanced therapeutic efficacy of interleukin-1β-primed mesenchymal stem cells against sepsis[J]. Stem Cells, 2017, 35(5): 1208-1221.
25
Zhao G, Miao H, Li X, et al. TGF-β3-induced miR-494 inhibits macrophage polarization via suppressing PGE2 secretion in mesenchymal stem cells[J]. FEBS Lett, 2016, 590(11): 1602-1613.
26
Zhao X, Liu D, Gong W, et al. The toll-like receptor 3 ligand, poly(I:C), improves immunosuppressive function and therapeutic effect of mesenchymal stem cells on sepsis via inhibiting MiR-143[J]. Stem Cells, 2014, 32(2): 521-33.
27
Hsu LW, Huang KT, Nakano T, et al. MicroRNA-301a inhibition enhances the immunomodulatory functions of adipose-derived mesenchymal stem cells by induction of macrophage M2 polarization[J]. Int J Immunopathol Pharmacol, 2020, 34: 2058738420966092.
28
Müller L, Tunger A, Wobus M, et al. Immunomodulatory properties of mesenchymal stromal cells: an update[J]. Front Cell Dev Biol, 2021, 9: 637725.
29
Wu J, Ji C, Cao F, et al. Bone marrow mesenchymal stem cells inhibit dendritic cells differentiation and maturation by microRNA-23b[J]. Biosci Rep, 2017, 37(2): BSR20160436.
30
Yu Y, Liao L, Shao B, et al. Knockdown of microRNA let-7a improves the functionality of bone marrow-derived mesenchymal stem cells in immunotherapy[J]. MolTher, 2017, 25(2): 480-493.
31
Wu T, Liu Y, Fan Z, et al. miR-21 Modulates the immunoregulatory function of bone marrow mesenchymal stem cells through the PTEN/Akt/TGF-β1 pathway[J]. Stem Cells, 2015, 33(11): 3281-3290.
32
Hu E, Ding L, Miao H, et al. MiR-30a attenuates immunosuppressive functions of IL-1β-elicited mesenchymal stem cells via targeting TAB3[J]. FEBS Lett, 2015, 589(24 Pt B): 3899-3907.
33
Cho S, Wu CJ, Yasuda T, et al. miR-23~27~24 clusters control effector T cell differentiation and function[J]. J Exp Med, 2016, 213(2): 235-249.
34
Morel PA, Butterfield LH. Dendritic cell control of immune responses[J]. Front Immunol, 2015, 6: 42.
35
Zhou H, Wu L. The development and function of dendritic cell populations and their regulation by miRNAs[J]. Protein Cell, 2017, 8(7): 501-513.
36
Reis M, Mavin E, Nicholson L, et al. Mesenchymal stromal cell-derived extracellular vesicles attenuate dendritic cell maturation and function[J]. Front Immunol, 2018, 9: 2538.
37
Pesce S, Greppi M, Ferretti E, et al. miRNAs in NK cell-based immune responses and cancer immunotherapy[J]. Front Cell Dev Biol, 2020, 8: 119.
38
Mi QS, Wang J, Liu Q, et al. microRNA dynamic expression regulates invariant NKT cells[J]. Cell Mol Life Sci, 2021, doi: 10.1007/s00018-021-03895-7.
39
Sullivan RP, Fogel LA, Leong JW, et al. MicroRNA-155 tunes both the threshold and extent of NK cell activation via targeting of multiple signaling pathways[J]. J Immunol, 2013, 191(12): 5904-5013.
40
Komabayashi Y, Kishibe K, Nagato T, et al. Downregulation of miR-15a due to LMP1 promotes cell proliferation and predicts poor prognosis in nasal NK/T-cell lymphoma[J]. Am J Hematol, 2014, 89(1): 25-33.
41
Chen HH, Huang WT, Yang LW, et al. The PTEN-AKT-mTOR/RICTOR Pathway in Nasal Natural Killer Cell Lymphoma Is Activated by miR-494-3p via PTEN But Inhibited by miR-142-3p via RICTOR[J]. Am J Pathol, 2015, 185(5): 1487-1499.
[1] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[2] 吕军好, 林锦雯, 张心怡, 陈江华. 细胞外囊泡在肾移植诊断和治疗中的研究进展[J]. 中华移植杂志(电子版), 2024, 18(03): 186-192.
[3] 邓瑞锋, 程璐, 周宇林, 刘远灵, 江文聪, 江敏耀, 江福能, 习明. TGF-β1诱导骨髓间充质干细胞外泌体分泌miR-424-3p促进前列腺癌细胞增殖及转移[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 82-89.
[4] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[5] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[6] 孙海燕, 周士燕, 张杉杉, 张研, 张茜. 间充质干细胞及其外泌体在高原肺水肿中的潜在治疗机制研究进展[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 186-190.
[7] 凌淑洵, 涂玥, 刘思逸. 间充质干细胞在慢性肾脏病研究领域现状和趋势的知识图谱可视化分析[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 73-82.
[8] 王娟, 刘晔, 熊威, 蒋财磊, 贺燕, 叶青松. 间充质干细胞缓解阿尔茨海默病氧化应激的新思路[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 93-106.
[9] 梁国豪, 张茜, 张研. 间充质干细胞及其衍生物治疗高原低氧环境下心血管疾病的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 107-112.
[10] 景水力, 王娟, 刘晔, 周亨, 熊威, 叶青松. 间充质干细胞在脊髓损伤中的应用及研究进展[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 113-121.
[11] 陆雅斐, 皇甫少华, 马传学, 江滨. 间充质干细胞治疗肛瘘手术方式的研究进展[J]. 中华结直肠疾病电子杂志, 2024, 13(03): 242-249.
[12] 史敬萱, 焦圆圆, 田景玮, 卓莉. 间充质干细胞来源外泌体治疗动物糖尿病肾脏病的效果:Meta分析[J]. 中华肾病研究电子杂志, 2024, 13(02): 79-86.
[13] 付章宁, 耿晓东, 张永军, 陆宇平, 孙冠南, 张益帆, 蔡广研, 陈香美, 洪权. 间充质干细胞促进肾脏损伤修复机制研究进展[J]. 中华肾病研究电子杂志, 2024, 13(02): 87-91.
[14] 李松栗, 黄蔚, 巢杰, 杨毅, 邱海波. 单核/巨噬细胞来源的细胞外囊泡在急性呼吸窘迫综合征中的研究进展[J]. 中华重症医学电子杂志, 2024, 10(03): 253-257.
[15] 胡梓菡, 彭菲, 孙骎, 杨毅. 细胞外囊泡在脓毒症血管内皮损伤作用中的研究进展[J]. 中华重症医学电子杂志, 2024, 10(03): 265-270.
阅读次数
全文


摘要