1 |
Goldstraw P, Chansky K, Crowley J, et al. The IASLC lung cancer staging project: Proposals for revision of the TNM stage groupings in the forthcoming (Eighth) edition of the TNM classification for lung cancer[J]. J Thorac Oncol, 2016, 11(1): 39-51.
|
2 |
Sihoe A. Video-assisted thoracoscopic surgery as the gold standard for lung cancer surgery[J]. Respirology, 2020, 25(Suppl 2): 49-60.
|
3 |
Kanzaki M. Current status of robot-assisted thoracoscopic surgery for lung cancer[J]. Surg Today, 2019, 49(10): 795-802.
|
4 |
Menna C, De Falco E, Teodonio L, et al. Surgical wound-site inflammation:video-assisted thoracic surgery versus thoracotomy[J]. Interact Cardiovasc Thorac Surg, 2019, 28(2): 240-246.
|
5 |
Wilkinson H N, Hardman MJ. Wound healing: Cellular mechanisms and pathological outcomes[J]. Open Biol, 2020, 10(9): 200223.
|
6 |
Takeo M, Lee W, Ito M. Wound healing and skin regeneration[J]. Cold Spring Harb Perspect Med, 2015, 5(1): a23267.
|
7 |
Brazil JC, Quiros M, Nusrat A, et al. Innate immune cell-epithelial crosstalk during wound repair[J]. J Clin Invest, 2019, 129(8): 2983-2993.
|
8 |
Nourian DA, Mirahmadi BF, Chehelgerdi M, et al. Skin tissue engineering:wound healing based on stem-cell-based therapeutic strategies[J]. Stem Cell Res Ther, 2019, 10(1): 111.
|
9 |
Beyene RT, Derryberry SJ, Barbul A. The effect of comorbidities on wound healing[J]. Surg Clin North Am, 2020, 100(4): 695-705.
|
10 |
Guo S, Dipietro LA. Factors affecting wound healing[J]. J Dent Res, 2010, 89(3): 219-229.
|
11 |
Payne WG, Walusimbi MS, Blue ML, et al. Radiated groin wounds: pitfalls in reconstruction[J]. Am Surg, 2003, 69(11): 994-997.
|
12 |
Toyooka Y. Pluripotent stem cells in the research for extraembryonic cell differentiation[J]. Dev Growth Differ, 2021, 63(2): 127-139.
|
13 |
Guenou H, Nissan X, Larcher F, et al. Human embryonic stem-cell derivatives for full reconstruction of the pluristratified epidermis: a preclinical study[J]. Lancet, 2009, 374(9703): 1745-1753.
|
14 |
Kanji S, Das H. Advances of stem cell therapeutics in cutaneous wound healing and regeneration[J]. Mediators Inflamm, 2017, 2017: 5217967.
|
15 |
Walter MN, Wright KT, Fuller HR, et al. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: an in vitro study of fibroblast and keratinocyte scratch assays[J]. Exp Cell Res, 2010, 316(7): 1271-1281.
|
16 |
Bilousova G, Chen J, Roop DR. Differentiation of mouse induced pluripotent stem cells into a multipotent keratinocyte lineage[J]. J Invest Dermatol, 2011, 131(4): 857-864.
|
17 |
Itoh M, Umegaki-Arao N, Guo Z, et al. Generation of 3D skin equivalents fully reconstituted from human induced pluripotent stem cells (iPSCs)[J]. PLoS One, 2013, 8(10): e77673.
|
18 |
Jeske R, Bejoy J, Marzano M, et al. Human pluripotent stem cell-derived extracellular vesicles: Characteristics and applications[J]. Tissue Eng Part B Rev, 2020, 26(2): 129-144.
|
19 |
Wang A. Human induced pluripotent stem cell-derived exosomes as a new therapeutic strategy for various diseases[J]. Int J Mol Sci, 2021, 22(4): 1769.
|
20 |
Madrid M, Sumen C, Aivio S, et al. Autologous induced pluripotent stem cell-based cell therapies: promise, progress, and challenges[J]. Curr Protoc, 2021, 1(3): e88.
|
21 |
Nakagawa H, Akita S, Fukui M, et al. Human mesenchymal stem cells successfully improve skin-substitute wound healing[J]. Br J Dermatol, 2005, 153(1): 29-36.
|
22 |
Abd-Allah SH, El-Shal AS, Shalaby SM, et al. The role of placenta-derived mesenchymal stem cells in healing of induced full-thickness skin wound in a mouse model[J]. IUBMB Life, 2015, 67(9): 701-709.
|
23 |
Herrmann JL, Weil BR, Abarbanell AM, et al. IL-6 and TGF-alpha costimulate mesenchymal stem cell vascular endothelial growth factor production by ERK-,JNK-,and PI3K-mediated mechanisms[J]. Shock, 2011, 35(5): 512-516.
|
24 |
Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses[J]. Blood, 2005, 105(4): 1815-1822.
|
25 |
Abolgheit S, Abdelkader S, Aboushelib M, et al. Bone marrow-derived mesenchymal stem cells and extracellular vesicles enriched collagen chitosan scaffold in skin wound healing (a rat model)[J]. J Biomater Appl, 2021, 36(1): 128-139.
|
26 |
Bist D, Pawde AM, Amarpal, et al. Evaluation of canine bone marrow-derived mesenchymal stem cells for experimental full-thickness cutaneous wounds in a diabetic rat model[J]. Expert Opin Biol Ther, 2021, 21(12): 1655-1664.
|
27 |
Fu X, Fang L, Li X, et al. Enhanced wound-healing quality with bone marrow mesenchymal stem cells autografting after skin injury[J]. Wound Repair Regen, 2006, 14(3): 325-335.
|
28 |
Sotoodehnejadnematalahi F, Moghadasali R, Hajinasrollah M, et al. Immunomodulatory activity of human bone marrow and adipose-derived mesenchymal stem cells prolongs allogenic skin graft survival in nonhuman primates[J]. Cell J, 2021, 23(1): 1-13.
|
29 |
Mebarki M, Abadie C, Larghero J, et al. Human umbilical cord-derived mesenchymal stem/stromal cells: a promising candidate for the development of advanced therapy medicinal products[J]. Stem Cell Res Ther, 2021, 12(1): 152.
|
30 |
Han Y, Sun T, Han Y, et al. Human umbilical cord mesenchymal stem cells implantation accelerates cutaneous wound healing in diabetic rats via the Wnt signaling pathway[J]. Eur J Med Res, 2019, 24(1): 10.
|
31 |
Jung JA, Yoon YD, Lee HW, et al. Comparison of human umbilical cord blood-derived mesenchymal stem cells with healthy fibroblasts on wound-healing activity of diabetic fibroblasts[J]. Int Wound J, 2018, 15(1): 133-139.
|
32 |
Mebarki M, Iglicki N, Marigny C, et al. Development of a human umbilical cord-derived mesenchymal stromal cell-based advanced therapy medicinal product to treat immune and/or inflammatory diseases[J]. Stem Cell Res Ther, 2021, 12(1): 571.
|
33 |
Zou ML, Liu SY, Sun ZL, et al. Insights into the role of adipose-derived stem cells: Wound healing and clinical regenerative potential [J]. J Cell Physiol, 2021, 236(4): 2290-2297.
|
34 |
Ebrahimian TG, Pouzoulet F, Squiban C, et al. Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing[J]. Arterioscler Thromb Vasc Biol, 2009, 29(4): 503-510.
|
35 |
Lee EY, Xia Y, Kim WS, et al. Hypoxia-enhanced wound-healing function of adipose-derived stem cells: increase in stem cell proliferation and up-regulation of VEGF and bFGF[J]. Wound Repair Regen, 2009, 17(4): 540-547.
|
36 |
An Y, Lin S, Tan X, et al. Exosomes from adipose-derived stem cells and application to skin wound healing[J]. Cell Prolif, 2021, 54(3): e12993.
|