切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2022, Vol. 15 ›› Issue (02) : 287 -289. doi: 10.3877/cma.j.issn.1674-6902.2022.02.041

综述

线粒体质量控制在慢性阻塞性肺疾病作用机制的研究进展
冯同1, 代文静1, 李万成1,()   
  1. 1. 610500 成都,成都医学院,成都医学院第一附属医院呼吸与危重症医学科,老年呼吸病 四川省高等学校实验室
  • 收稿日期:2021-05-15 出版日期:2022-04-25
  • 通信作者: 李万成
  • 基金资助:
    国家临床重点专科建设培育科室专项科研项目(CYFY2018GLPHX01)

Research progress on the mechanism of mitochondrial quality control in chronic obstructive pulmonary Disease

Tong Feng1, Wenjing Dai1, Wancheng Li1()   

  • Received:2021-05-15 Published:2022-04-25
  • Corresponding author: Wancheng Li
引用本文:

冯同, 代文静, 李万成. 线粒体质量控制在慢性阻塞性肺疾病作用机制的研究进展[J]. 中华肺部疾病杂志(电子版), 2022, 15(02): 287-289.

Tong Feng, Wenjing Dai, Wancheng Li. Research progress on the mechanism of mitochondrial quality control in chronic obstructive pulmonary Disease[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2022, 15(02): 287-289.

表1 COPD下线粒体质量控制现有的潜在干预靶点
1
Sun N, Youle RJ, Finkel T. The Mitochondrial Basis of Aging[J]. Mol Cell, 2016, 61(5): 654-666.
2
Ahlqvist KJ, Hamalainen RH, Yatsuga S, et al. Somatic progenitor cell vulnerability to mitochondrial DNA mutagenesis underlies progeroid phenotypes in Polg mutator mice[J]. Cell Metab, 2012, 15(1): 100-109.
3
Larsen SB, Hanss Z, Kruger R. The genetic architecture of mitochondrial dysfunction in Parkinson′s disease[J]. Cell Tissue Res, 2018, 373(1): 21-37.
4
Ito S, Araya J, Kurita Y, et al. PARK2-mediated mitophagy is involved in regulation of HBEC senescence in COPD pathogenesis[J]. Autophagy, 2015, 11(3): 547-559.
5
Araya J, Tsubouchi K, Sato N, et al. PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis[J]. Autophagy, 2019, 15(3): 510-526.
6
Ge Y, Shi X, Boopathy S, et al. Two forms of Opa1 cooperate to complete fusion of the mitochondrial inner-membrane[J]. eLife Sciences, 2020, 9. DOI:10.7554/eLife.50973
7
Bernardini JP, Lazarou M, Dewson G. Parkin and mitophagy in cancer[J]. Oncogene, 2017, 36(10): 1315-1327.
8
Vega RB, Horton JL, Kelly DP. Maintaining ancient organelles: mitochondrial biogenesis and maturation[J]. Circ Res, 2015, 116(11): 1820-1834.
9
任成山,王关嵩,钱桂生. 慢性阻塞性肺疾病的成因及其治疗的困惑与希望[J/CD]. 中华肺部疾病杂志(电子版), 2019, 12(2): 127-141.
10
Fang L, Gao P, Bao H, et al. Chronic obstructive pulmonary disease in China: a nationwide prevalence study[J]. Lancet Respir Med, 2018, 6(6): 421-430.
11
Araya J, Tsubouchi K, Sato N, et al. PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis[J]. Autophagy, 2019, 15(3): 510-526.
12
Bulua AC, Simon A, Maddipati R, et al. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS)[J]. J Exp Med, 2011, 208(3): 519-533.
13
Minutoli L, Puzzolo D, Rinaldi M, et al. ROS-Mediated NLRP3 inflammasome activation in brain, heart, kidney, and testis ischemia/reperfusion Injury[J]. Oxid Med Cell Longev, 2016, 2016: 2183026.
14
Hoffmann RF, Zarrintan S, Brandenbuge SM, et al. Prolonged cigarette smoke exposure alters mitochondrial structure and function in airway epithelial cells[J]. Respir Res, 2013, 14: 97.
15
Hara H, Araya J, Ito S, et al. Mitochondrial fragmentation in cigarette smoke-induced bronchial epithelial cell senescence[J]. Am J Physiol Lung Cell Mol Physiol, 2013, 305(10): L737-L746.
16
Jiang Y, Wang X, Hu D. Mitochondrial alterations during oxidative stress in chronic obstructive pulmonary disease[J]. Int J Chron Obstruct Pulmon Dis, 2017, 12: 1153-1162.
17
Ballwge K, Mutze K, Königshoff M, et al. Cigarette smoke extract affects mitochondrial function in alveolar epithelial cells[J]. Am J Physiol Lung Cell Mol Physiol, 2014, 307(11): L895-L907.
18
Ahmad T, Sundar IK, Lerner CA, et al. Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: implications for chronic obstructive pulmonary disease[J]. FASEB J, 2015, 29(7): 2912-2929.
19
Van der Toorn M, Rezayat D, Kauffman HF, et al. Lipid-soluble components in cigarette smoke induce mitochondrial production of reactive oxygen species in lung epithelial cells[J]. Am J Physiol Lung Cell Mol Physiol, 2009, 297(1): L109-L114.
20
Fujii S, Hara H, Araya J, et al. Insufficient autophagy promotes bronchial epithelial cell senescence in chronic obstructive pulmonary disease[J]. Oncoimmunology, 2012, 1(5): 630-641.
21
Ito S, Araya J, Kurita Y, et al. PARK2-mediated mitophagy is involved in regulation of HBEC senescence in COPD pathogenesis[J]. Autophagy, 2015, 11(3): 547-559.
22
Mizumura K, Cloonan SM, Nakahira K, et al. Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD[J]. J Clin Invest, 2014, 124(9): 3987-4003.
23
Zhang Z, Cheng X, Yue L, et al. Molecular pathogenesis in chronic obstructive pulmonary disease and therapeutic potential by targeting AMP-activated protein kinase[J]. J Cell Physiol, 2018, 233(3): 1999-2006.
24
Tang GJ, Wang HY, Wang JY, et al. Novel role of AMP-activated protein kinase signaling in cigarette smoke induction of IL-8 in human lung epithelial cells and lung inflammation in mice[J]. Free Radic Biol Med, 2011, 50(11): 1492-1502.
25
Wang W, Yang X, López DSI, et al. Increased AMP:ATP ratio and AMP-activated protein kinase activity during cellular senescence linked to reduced HuR function[J]. J Biol Chem, 2003, 278(29): 27016-27023.
26
Correia-Melo C, Marques FD, Anderson R, et al. Mitochondria are required for pro-ageing features of the senescent phenotype[J]. EMBO J, 2016, 35(7): 724-742.
27
Vanella L, Li VG, Distefano A, et al. A new antioxidant formulation reduces the apoptotic and damaging effect of cigarette smoke extract on human bronchial epithelial cells[J]. Eur Rev Med Pharmacol Sci, 2017, 21(23): 5478-5484.
28
Yu G, Tzouvelekis A, Wang R, et al. Thyroid hormone inhibits lung fibrosis in mice by improving epithelial mitochondrial function[J]. Nature Medicine, 2018, 24(1): 39-49.
[1] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[2] 张永博, 张亮, 陈浏阳, 戴睿, 孙华, 杨盛, 孟博, 彭晴. 线粒体与椎间盘退变[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 265-269.
[3] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[4] 徐丽玲, 卢玉宝, 赵彦, 任利, 李姝艺, 符娟, 康玲, 汪青松, 尤再春. COPD管理云平台的构建及临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 481-484.
[5] 李海明, 刘鸿飞, 李俊. 血清脂蛋白酶水平与COPD患者骨骼肌质量减少的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 500-503.
[6] 周杉京, 诸葛金科, 王芳芳. 补肺活血胶囊对COPD患者cCor、ALD、Ang-Ⅱ的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 517-519.
[7] 吴庆华, 冒勇, 闫效坤. AECOPD并发AKI的危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 529-531.
[8] 芦丹, 杨硕, 刘旭. VEGF、HMGB1、hs-CRP/Alb在AECOPD伴呼吸衰竭中的变化及预后分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 532-534.
[9] 熊锋, 娄建丽. 慢性阻塞性肺疾病急性加重期预后的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 550-553.
[10] 王庆, 张红联, 吴志勇. COPD合并多重耐药菌肺部感染预后危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 557-559.
[11] 林静, 陈芳, 刘小霞. COPD患者认知功能障碍影响因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 569-571.
[12] 张七妹, 麦宜准, 蒋浩波. 喘可治对慢性阻塞性肺疾病缓解期的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 578-580.
[13] 张林, 刘芳, 赵静, 刘勇, 周青. 远程康复在慢性阻塞性肺疾病患者肺康复中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 601-604.
[14] 苏国栋, 王剑桥, 刘洋, 樊祥德, 樊华, 刘惠林. 吸气肌训练对COPD运动恐动症的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 421-423.
[15] 于乾雪, 廖学梅, 孙龙龙, 范梦莹, 蒋明超, 孟慧, 李瑞基. 线粒体功能障碍与卵巢早衰的研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 283-288.
阅读次数
全文


摘要