切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2022, Vol. 15 ›› Issue (04) : 477 -480. doi: 10.3877/cma.j.issn.1674-6902.2022.04.005

论著

环介导恒温扩增芯片法在下呼吸道感染病原体检测中的临床应用
乔艳艳1, 韩璐瑶2, 王在强1, 冯艳珍1, 李婵1, 李玉娟1, 金发光1, 傅恩清1,()   
  1. 1. 710038 西安,空军军医大学第二附属医院呼吸与危重症医学科
    2. 710032 西安,空军军医大学第一附属医院呼吸与危重症医学科
  • 收稿日期:2021-12-21 出版日期:2022-08-25
  • 通信作者: 傅恩清

Clinical application the loop-mediated isothermal amplification assay for the identification of pathogens in lower respiratory tract infections

Yanyan Qiao1, Luyao Han2, Zaiqiang Wang1, Yanzhen Feng1, Chan Li1, Yujuan Li1, Faguang Jin1, Enqing Fu1,()   

  1. 1. Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Air Force Medical University, Xi′an 710038, China
    2. Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Air Force Medical University, Xi′an 710032, China
  • Received:2021-12-21 Published:2022-08-25
  • Corresponding author: Enqing Fu
引用本文:

乔艳艳, 韩璐瑶, 王在强, 冯艳珍, 李婵, 李玉娟, 金发光, 傅恩清. 环介导恒温扩增芯片法在下呼吸道感染病原体检测中的临床应用[J]. 中华肺部疾病杂志(电子版), 2022, 15(04): 477-480.

Yanyan Qiao, Luyao Han, Zaiqiang Wang, Yanzhen Feng, Chan Li, Yujuan Li, Faguang Jin, Enqing Fu. Clinical application the loop-mediated isothermal amplification assay for the identification of pathogens in lower respiratory tract infections[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2022, 15(04): 477-480.

目的

分析环介导恒温扩增芯片法(LAMP)在下呼吸道感染病原体检测中的应用价值。

方法

选择2018年1月至2018年9月空军军医大学第二附属医院收治的1 092例疑似下呼吸道感染患者,分析支气管肺泡灌洗液病原体检测结果,以细菌培养结果为金标准,评价LAMP检测8种常见下呼吸道感染病原体的灵敏度、特异度、阳性预测值、阴性预测值、阳性似然比、阴性似然比。

结果

LAMP检测8种病原体的灵敏度差异较大,检测金黄色葡萄球菌灵敏度最高(100%),检测大肠埃希菌灵敏度最低(40%),检测8种病原体的特异度均高于94%。LAMP检测8种病原体的阳性预测值低于65%,阴性预测值高于98%,阳性似然比高于13,阴性似然比各病原体间差异较大,金黄色葡萄球菌阴性似然比最低(0.00),大肠埃希菌阴性似然比最高(0.60)。

结论

LAMP在下呼吸道感染病原体检测中有较高的准确性,利于下呼吸道感染的早期诊断和精准治疗,具有临床意义。

Objective

To more accurately evaluate the performance of loop-mediated isothermal amplification (LAMP) assay for the identification of pathogens in lower respiratory tract infections(LRTIs).

Methods

The pathogen identification results of 1092 bronchoalveolar lavage fluid (BALF) samples from presumptive LRTI patients admitted to the Tangdu Hospital from January 2018 to September 2018 were analyzed retrospectively. Taking the bacterial culture as the gold standard, the sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio and negative likelihood ratio of LAMP for detecting 8 common lower respiratory tract infection pathogens were calculated.

Results

The sensitivity of LAMP for detecting 8 pathogens were quite different, with the highest sensitivity to Staphylococcus aureus (100%) and the lowest sensitivity to Escherichia coli (40%). The specificity of LAMP for detecting 8 pathogens were higher than 94%. The positive predictive value of the LAMP test results for 8 pathogens were lower than 65%, the negative predictive value were higher than 98%, the positive likelihood were higher than 13. The negative likelihood ratio of the LAMP test results for 8 pathogens were quite different, with the lowest negative likelihood ratio to Staphylococcus aureus (0.00) and the highest negative likelihood ratio to Escherichia coli (0.60).

Conclusion

The LAMP has high accuracy in detecting pathogens of lower respiratory tract infections, which is helpful for early diagnosis and precise treatment of lower respiratory tract infections.

表1 LAMP和细菌培养病原体检出情况[n(%)]
表2 LAMP检测病原体准确性评价指标
1
GBD 2013 Mortality and Causes of Death Collaborators.Global, regional,and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013[J]. Lancet, 2015, 385(9963): 117-171.
2
Troeger C, Forouzanfar M, Rao PC, et al. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory tract infections in 195 countries: a systematic analysis for the Global Burden of Disease Study 2015[J]. Lancet Infect Dis, 2017, 17(11): 1133-1161.
3
Gadsby NJ, McHugh MP, Russell CD, et al. Development of two real-time multiplex PCR assays for the detection and quantification of eight key bacterial pathogens in lower respiratory tract infections[J]. Clin Microbiol Infect, 2015, 21(8): 781-788.
4
Notomi T, Mori Y, Tomita N, et al. Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects[J]. J Microbiol, 2015, 53(1): 1-5.
5
陈愉生,王大璇,李鸿茹,等. 环介导等温扩增技术在下呼吸道感染常见病原体检测中的应用[J]. 中华结核和呼吸杂志2014, 37(4): 270-273.
6
Si Y, Zhang T, Chen N, et al. A LAMP-based system for rapid detection of eight common pathogens causing lower respiratory tract infections[J]. J Microbiol Methods, 2021, 190: 106339.
7
van den Munckhof E, de Koning M, Quint W, et al. Evaluation of a stepwise approach using microbiota analysis, species-specific qPCRs and culture for the diagnosis of lower respiratory tract infections[J]. Eur J Clin Microbiol Infect Dis, 2019, 38(4): 747-754.
8
Zhang L, Huang W, Zhang S, et al. Rapid detection of bacterial pathogens and antimicrobial resistance genes in clinical urine samples with urinary tract infection by metagenomic nanopore sequencing[J]. Front Microbiol, 2022, 13: 858777.
9
Saragih R, Yanni GN. Correlation between platelet profile (mean platelet volume, platelet volume distribution width and plateletcrit) with procalcitonin and C-reactive protein in critically Ⅲ children[J]. Prague Med Rep, 2022, 123(2): 82-87.
10
Hou J, Wu H, Zeng X, et al. Clinical evaluation of the loop-mediated isothermal amplification assay for the detection of common lower respiratory pathogens in patients with respiratory symptoms[J]. Medicine (Baltimore), 2018, 97(51): e13660.
11
Kang Y, Deng R, Wang C, et al. Etiologic diagnosis of lower respiratory tract bacterial infections using sputum samples and quantitative loop-mediated isothermal amplification[J]. PLoS One, 2012, 7(6): e38743.
12
熊丽丽,段京京,宁永忠,等. 支气管肺泡灌洗液细菌学和真菌学分析[J]. 中华检验医学杂志2014, 37(10): 784-786.
13
Loens K, Van Heirstraeten L, Malhotra-Kumar S, et al. Optimal sampling sites and methods for detection of pathogens possibly causing community-acquired lower respiratory tract infections[J]. J Clin Microbiol, 2009, 47: 21-31.
14
崔立慧,姚 欣,陈名霞. 环介导恒温扩增芯片技术在医院获得性肺炎病原菌检测中的应用[J]. 中国临床研究2022, 35(4): 451-455.
15
Liu Z, Pan J, Zhang T, et al. Application of isothermal amplification chip method in lower respiratory tract pathogens detection[J]. Lab Med Clinic, 2017, 8: 1052-1053.
16
Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA[J]. Nucleic Acids Res, 2000, 28(12): e63.
17
Kim CK, Cho EA, Shin DM, et al. Comparative evaluation of the loop-mediated isothermal amplification assay for detecting pulmonary tuberculosis[J]. Ann Lab Med, 2018, 38: 119-124.
18
李 美,陈飘飘,应斌武. 基于环介导等温扩增技术的即时检测在检验医学中的应用[J]. 中华检验医学杂志2021, 44(9): 776-780.
19
Lim KT, Teh CS, Thong KL. Loop-mediated isothermal amplification assay for the rapid detection of Staphylococcus aureus[J]. Biomed Res Int, 2013, 2013: 895816.
20
Ishiguro N, Koseki N, Kaiho M, et al. Sensitivity and specificity of a loop-mediated isothermal amplification assay for the detection of mycoplasma pneumonia from nasopharyngeal swab samples compared with those of realtime PCR[J]. Clin Lab, 2015, 61: 603-606.
21
吴阳升,罗淑萍. 一种新的高效快速核酸恒温扩增方法——LAMP法[J]. 生物技术2004, 14(4): 76-89.
22
石 磊,王 曼,时国强,等. 环介导等温扩增技术研究进展[J]. 河北大学学报:自然科学版2021, 41(5): 565-571.
23
李玉姣,程小刚,钱 飞,等. 健康成人口腔微生物组成及功能的宏基因组学研究[J]. 口腔疾病防治2022, 30(8): 533-541.
24
Kolenbrander PE. Oral microbial communities: biofilms, interactions,and genetic systems[J]. Annu Rev Microbiol, 2000, 54: 413-437.
25
Tuganbaev T, Yoshida K, Honda K. The effects of oral microbiota on health[J]. Science, 2022, 376(6596): 934-936.
26
蔡 甜,陈振华,牛英波,等. 恒温扩增芯片法对下呼吸道标本细菌检测中的临床应用价值[J/CD]. 心电图杂志(电子版), 2019, 8(2): 89-92.
27
Kirst ME, Baker D, Li E, et al. Upper versus lower airway microbiome and metagenome in children with cystic fibrosis and their correlation with lung inflammation[J]. PLoS One, 2019, 14(9): e222323.
28
Leeflang MM, Rutjes AW, Reitsma JB, et al. Variation of a test′s sensitivity and specificity with disease prevalence[J]. CMAJ, 2013, 185(11): e537-e544.
29
Akobeng AK. Understanding diagnostic tests 1: sensitivity, specificity and predictive values[J]. Acta Paediatr, 2007, 96(3): 338-341.
30
Rehling M. Visualizing the impact of prevalence on a diagnostic test[J]. Scand J Clin Lab Invest, 2010, 70(6): 458-461.
31
Akobeng AK. Understanding diagnostic tests 2: likelihood ratios, pre- and post-test probabilities and their use in clinical practice[J]. Acta Paediatr, 2007, 96(4): 487-491.
[1] 夏金蓉, 王慧, 刘玉珊, 谢江. COVID-19疫情暴发前、后呼吸道感染住院患儿呼吸道病原体的变化[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(06): 712-721.
[2] 杨婷婷, 王军. 机械通气新生儿发生呼吸机相关性肺炎影响因素分析[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(02): 234-239.
[3] 赵雨菲, 刘瀚旻. 儿童常见病原体所致社区获得性肺炎胸部X射线摄片影像学表现[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(01): 7-14.
[4] 陆月合, 高晓燕. 新生儿感染性脑损伤的早期诊断[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(04): 380-386.
[5] 周佩佩, 吴亚楠, 王莹, 王然. 气管支气管异物致患儿下呼吸道感染的危险因素[J]. 中华实验和临床感染病杂志(电子版), 2021, 15(04): 276-280.
[6] 杨理, 顾佳, 龙筱露, 沈克锋, 张炜, 肖敏. 利用高通量宏基因组测序技术检测血液病患者感染性病原体的横断面研究[J]. 中华实验和临床感染病杂志(电子版), 2020, 14(02): 99-103.
[7] 宋昕, 耿涛, 刘长春. 老年下呼吸道感染者血清25-羟维生素D3水平与血清炎症因子水平的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 215-217.
[8] 卢健聪, 谢燕君, 叶凯, 林俊鸿. mNGS技术在免疫缺陷重症肺炎患者病原体诊断中的意义[J]. 中华肺部疾病杂志(电子版), 2021, 14(03): 360-362.
[9] 杨敏, 谢集建, 陈炜. 十堰地区婴幼儿社区获得性肺炎常见病原体致病情况及耐药性变迁分析[J]. 中华肺部疾病杂志(电子版), 2020, 13(06): 737-741.
[10] 宋艳, 魏碧霞, 陶勇, 阿依古孜·克里木, 丁琳. 眼内液检测在明确葡萄膜炎病因中应用的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 82-87.
[11] 杨翔, 郭兰骐, 谢剑锋, 邱海波. 宏基因组二代测序在脓毒症病原体诊断中的应用进展[J]. 中华重症医学电子杂志, 2023, 09(03): 292-297.
[12] 陈谦, 任敬, 郭再玉. 急性出血性脑卒中开颅术后下呼吸道感染的危险因素及临床分析[J]. 中华脑科疾病与康复杂志(电子版), 2020, 10(06): 327-330.
[13] 彭经纶, 罗娅莎, 郭军飞, 李欢, 黄研, 穆小萍. 肺炎患儿支气管肺泡灌洗液的病原学研究[J]. 中华临床实验室管理电子杂志, 2020, 08(03): 153-157.
[14] 刘敏, 彭才静, 王金能. 重庆市新型冠状病毒肺炎疫情前后儿童支气管肺炎痰培养结果分析[J]. 中华诊断学电子杂志, 2023, 11(02): 97-103.
[15] 于佳佳, 张旭霞, 李传友, 刘毅, 唐神结. 规律成簇间隔短回文重复序列及其相关蛋白基因编辑技术在感染性疾病诊断中的应用及其进展[J]. 中华诊断学电子杂志, 2021, 09(01): 62-66.
阅读次数
全文


摘要