1 |
Lim SS, Vos T, Flaxman AD, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010[J]. Lancet, 2012, 380: 2224-2260.
|
2 |
Liu Xudong, Zhang Yuchao, Yang Xu. Vitamin E reduces the extent of mouse brain damage induced by combined exposure to formaldehyde and PM2.5[J]. Ecotoxicol Environ Saf, 2019, 172(15): 33-39.
|
3 |
林红卫,金发光. PM2.5致呼吸系统损伤的机制及药物防治进展[J/CD]. 中华肺部疾病杂志(电子版), 2020, 13(3): 407-410.
|
4 |
Nsonwu-Anyanwu AC, Ndudi Idenyi A, Offor SJ, et al. Association of exposure to polycyclic aromatic hydrocarbons with inflammation, oxidative DNA damage and renal-pulmonary dysfunctions in barbecue makers in Southern Nigeria[J]. Rep Biochem Mol Biol, 2022, 11(1): 74-82.
|
5 |
Zhang N, Geng C, Xu J, et al. Characteristics, source contributions,and source-specific health risks of PM2.5-bound polycyclic aromatic hydrocarbons for senior citizens during the heating season in Tianjin, China[J]. Int J Environ Res Public Health, 2022, 19(8): 4440.
|
6 |
Peng SM, Yu N, Che J, et al. Total, bioavailable and free 25-hydroxyvitamin D are associated with the prognosis of patients with non-small cell lung cancer.[J]. Cancer Causes Control, 2022, 33(7): 983-993.
|
7 |
Yang D, Chen L, Yang Y, et al. Effect of PM2.5 exposure on Vitamin D status among pregnant women: A distributed lag analysis[J]. Ecotoxicol Environ Saf, 2022, 239: 113642.
|
8 |
Li Zhongqiu, Qiu Liang, Cheng Xiaobei, et al. The evolution of soot morphology and nanostructure in laminar diffusion flame of surrogate fuels for diesel[J]. Fuel, 2018, 211: 517-528.
|
9 |
Zhu XM, Wang Q, Xing WW, et al. PM2.5 induces autophagy-mediated cell death via NOS2 signaling in human bronchial epithelium cells[J]. Int J Biol Sci, 2018, 14(5): 557-564.
|
10 |
Zhongyin Z, Wei W, Juan X, et al. Epigallocatechin gallate relieved PM2.5-induced lung fibrosis by inhibiting oxidative damage and epithelial-mesenchymal transition through AKT/mTOR pathway[J]. Oxid Med Cell Longev, 2022: 7291774.
|
11 |
Jin L, Deng L, Bartlett M, et al. A novel herbal extract blend product prevents particulate matters-induced inflammation by improving gut microbiota and maintaining the integrity of the intestinal barrier[J]. Nutrients, 2022, 14(10): 2010.
|
12 |
Scaranti MC, Gde Júnior, Hoff AO. Vitamin D and cancer: Does it really matter?[J]. Current Opin Oncol, 2016, 28: 205-209.
|
13 |
Hansdottir S, Monick MM, Hinde SL, et al. Respiratory epithelial cells convert inactive vitamin D to its active form: Potential effects on host defense[J]. J Immunol, 2008, 181: 7090-7099.
|
14 |
Ginde AA, Mansbach JM, CA. JC. Association between serum 25-hydroxyvitamin D level and upper respiratory tract infection in the Third National Health and Nutrition Examination Survey[J]. Arch Int Med, 2009, 169: 384-390.
|
15 |
Brehm JM, Celedón JC, Soto-Quiros ME, et al. Serum vitamin D levels and markers of severity of childhood asthma in Costa Rica[J]. Am J Resp Crit Care Med, 2009, 179: 765-771.
|
16 |
Luo CM, Feng J, Zhang J, et al. 1,25-Vitamin D3 protects against cooking oil fumes-derived PM2.5-induced cell damage through its anti-inflammatory effects in cardiomyocytes[J]. Ecotoxicol Environ Saf, 2019, 179: 249-256.
|
17 |
Ciesielski Fabrice, Sato Yoshiteru, Chebaro Yassmine, et al. Structural basis for the accommodation of bis-and tris-aromatic derivatives in vitamin D nuclear receptor[J]. J Med Chem, 2012, 55(19): 8440-8449.
|
18 |
Han Weiqiang, Lu Yao, Jin Chao, et al. Study on influencing factors of particle emissions from a RCCI engine with variation of premixing ratio and total cycle energy[J]. Energy, 2020, 202: 117707.
|
19 |
Kholghy M, Saffaripour M, Yip C, et al. The evolution of soot morphology in a laminar coflow diffusion flame of a surrogate for Jet A-1[J]. Combust Flame, 2013, 160: 2119-2130.
|
20 |
Dresselhaus MS, Dresselhaus G, PC. E: Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications[M]. San Diego: Academic Press, 1996: 112-214.
|
21 |
Zhang Y, Liu P, Li Y, et al. Study on fluorescence spectroscopy of PAHs with different molecular structures using laser-induced fluorescence (LIF) measurement and TD-DFT calculation[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2020, 224: 117450.
|
22 |
Hong ZY, Guo J, Yuan J, et al. Study on adsorption and controlled release of vitamin B_3 and vitamin C by activated carbons[J]. Appl Chem Industry, 2009, 38(12): 1742-1745.
|
23 |
Ding W, Jin H, Zhao Q, et al. Dissolution of polycyclic aromatic hydrocarbons in supercritical water in hydrogen production process: A molecular dynamics simulation study[J]. Int J Hydrogen Energy, 2020, 45(52): 28062-28069.
|
24 |
Woolgar P, Jones K. Studies on the dissolution of polycyclic aromatic hydrocarbons from contaminated materials using a novel dialysis tubing experimental method[J]. Environmental Sci Technol, 1999, 33: 2118-2126.
|
25 |
Zhang Y, Maier W, Miller R. Effect of Rhamnolipids on the Dissolution,Bioavailability, and Biodegradation of Phenanthrene[J]. Environmental Sci Technol, 1997, 31: 2211-2217.
|
26 |
Lee K, Kostarelos K, Fennell D. Modeling the transport of dissolved contaminants originating from a NAPL source containing PAH compounds in groundwater[J]. J Environ Eng Sci, 2011, 3: 541-548.
|
27 |
Hussein T, Ismail Z. Desorption of selected PAHs as individuals and as a ternary PAH mixture within a water-soil-nonionic surfactant system[J]. Environ Technol, 2012, 34: 351-361.
|
28 |
Abbas I, Saint-Georges F, Billet S, et al. Air pollution particulate matter (PM2.5)-induced gene expression of volatile organic compound and/or polycyclic aromatic hydrocarbon-metabolizing enzymes in an in vitro coculture lung model[J]. Toxicol In Vitro, 2009, 23(1): 37-46.
|
29 |
Vattanasit Udomratana, Navasumrit Panida, Khadka Man Bahadur, et al. Oxidative DNA damage and inflammatory responses in cultured human cells and in humans exposed to traffic-related particles[J]. Int J Hyg Environ Health, 2014, 217(1): 23-33.
|
30 |
Zheng L, Dong H, Zhao W, et al. An air-liquid interface organ-level lung microfluidics platform for analysis on molecular mechanisms of cytotoxicity induced by cancer-causing fine particles[J]. ACS Sens, 2019, 4(4): 907-917.
|
31 |
Xu F, Xu A, Guo Y, et al. PM2.5 exposure induces alveolar epithelial cell apoptosis and causes emphysema through p53/Siva-1[J]. Eur Rev Med Pharmacol Sci, 2020, 24(7): 3943-3950.
|
32 |
Xia R, Fang N, Yang Y, et al. PM2.5 promotes apoptosis of alveolar epithelial cells via targeting ROS/p38 signaling pathway and thus leads to emphysema in mice[J]. Minerva Med, 2020.
|