1 |
Vaz Fragoso CA. Epidemiology of lung disease in older persons[J]. Clin Geriatr Med, 2017, 33(4): 491-501.
|
2 |
Bade BC, Dela Cruz CS. Lung Cancer 2020: Epidemiology, etiology,and prevention[J]. Clin Chest Med, 2020, 41(1): 1-24.
|
3 |
王洪武,金发光. 晚期非小细胞肺癌多域整合治疗策略[J/CD]. 中华肺部疾病杂志(电子版), 2022, 15(4): 457-461.
|
4 |
Maselli DJ, Bhatt SP, Anzueto A, et al. Clinical epidemiology of COPD: Insights from 10 years of the COPD gene study[J]. Chest, 2019, 156(2): 228-238.
|
5 |
Stern J, Pier J, Litonjua AA. Asthma epidemiology and risk factors[J]. Semin Immunopathol, 2020, 42(1): 5-15.
|
6 |
Ahn DG, Shin HJ, Kim MH, et al. Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID-19)[J]. J Microbiol Biotechnol, 2020, 30(3): 313-324.
|
7 |
Banerjee R, Chen S, Dare K, et al. tRNAs: cellular barcodes for amino acids[J]. FEBS letters, 2010, 584(2): 387-395.
|
8 |
Abbott J, Francklyn C, Robey-Bond S. Transfer RNA and human disease[J]. Frontiers in genetics, 2014, 5: 158.
|
9 |
Speer J, Gehrke C, Kuo K, et al. tRNA breakdown products as markers for cancer[J]. Cancer, 1979, 44(6): 2120-2123.
|
10 |
Fu H, Feng J, Liu Q, et al. Stress induces tRNA cleavage by angiogenin in mammalian cells[J]. FEBS letters, 2009, 583(2): 437-442.
|
11 |
Li X, Liu X, Zhao D, et al. tRNA-derived small RNAs: novel regulators of cancer hallmarks and targets of clinical application[J]. Cell death discovery, 2021, 7(1): 249.
|
12 |
Zhang J, Li L, Luo L, et al. Screening and potential role of tRFs and tiRNAs derived from tRNAs in the carcinogenesis and development of lung adenocarcinoma[J]. Oncology letters, 2021, 22(1): 506.
|
13 |
Anderson P, Ivanov P. tRNA fragments in human health and disease[J]. FEBS letters, 2014, 588(23): 4297-304.
|
14 |
Zheng L, Xu W, Liu S, et al. tRF2Cancer: A web server to detect tRNA-derived small RNA fragments (tRFs) and their expression in multiple cancers[J]. Nucleic Acids Res, 2016, 44: W185-193.
|
15 |
Shen Y, Yu X, Zhu L, et al. Transfer RNA-derived fragments and tRNA halves: biogenesis, biological functions and their roles in diseases[J]. J Mol Med (Berl), 2018, 96(11): 1167-1176.
|
16 |
Li S, Xu Z, Sheng J. tRNA-derived small RNA: a novel regulatory small non-coding RNA[J]. Genes, 2018, 9(5): 246.
|
17 |
Zhu LW, Ge JX, Li TW, et al. tRNA-derived fragments and tRNA halves: The new players in cancers[J]. Cancer Lett, 2019, 452: 31-37.
|
18 |
La Ferlita A, Alaimo S, Veneziano D, et al. Identification of tRNA-derived ncRNAs in TCGA and NCI-60 panel cell lines and development of the public database tRFexplorer[J]. Database (Oxford), 2019, 2019: baz115.
|
19 |
Pliatsika V, Loher P, Magee R, et al. MINTbase v2.0: a comprehensive database for tRNA-derived fragments that includes nuclear and mitochondrial fragments from all The Cancer Genome Atlas projects[J]. Nucleic Acids Res, 2018, 46(D1): D152-D159.
|
20 |
Loher P, Telonis AG, Rigoutsos I. Accurate profiling and quantification of tRNA fragments from RNA-Seq data: A vade mecum for MINTmap[J]. Methods Mol Biol, 2018, 1680: 237-255.
|
21 |
Zuo Z, Hu H, Xu Q, et al. BBCancer: an expression atlas of blood-based biomarkers in the early diagnosis of cancers[J]. Nucleic Acids Res, 2020, 48(D1): D789-D796.
|
22 |
Yao D, Sun X, Zhou L, et al. OncotRF: an online resource for exploration of tRNA-derived fragments in human cancers[J]. RNA Biol, 2020, 17(8): 1081-1091.
|
23 |
Zuo Y, Zhu L, Guo Z, et al. tsRBase: a comprehensive database for expression and function of tsRNAs in multiple species[J]. Nucleic Acids Res, 2021, 49(D1): D1038-D1045.
|
24 |
Wang JH, Chen WX, Mei S Q, et al. tsRFun: a comprehensive platform for decoding human tsRNA expression, functions and prognostic value by high-throughput small RNA-Seq and CLIP-Seq data[J]. Nucleic Acids Res, 2022, 50(D1): D421-D431.
|
25 |
Maute RL, Schneider C, Sumazin P, et al. tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma[J]. Proc Natl Acad Sci U S A, 2013, 110(4): 1404-1409.
|
26 |
Shao Y, Sun Q, Liu X, et al. tRF-Leu-CAG promotes cell proliferation and cell cycle in non-small cell lung cancer[J]. Chem Biol Drug Des, 2017, 90(5): 730-738.
|
27 |
Saikia M, Jobava R, Parisien M, et al. Angiogenin-cleaved tRNA halves interact with cytochrome c, protecting cells from apoptosis during osmotic stress[J]. Mol Cell Biol, 2014, 34(13): 2450-2463.
|
28 |
Wu F, Wang L, Zhou C. Lung cancer in China: current and prospect [J]. Curr Opin Oncol, 2021, 33(1): 40-46.
|
29 |
Hwang SK, Chang SH, Minai-Tehrani A, et al. Lentivirus-AIMP2-DX2 shRNA suppresses cell proliferation by regulating Akt1 signaling pathway in the lungs of AIMP2?/? mice[J]. J Aerosol Med Pulm Drug Deliv, 2013, 26(3): 165-173.
|
30 |
Balatti V, Nigita G, Veneziano D, et al. tsRNA signatures in cancer[J]. Proc Natl Acad Sci U S A, 2017, 114(30): 8071-8076.
|
31 |
Zhang J, Li L, Luo L, et al. Screening and potential role of tRFs and tiRNAs derived from tRNAs in the carcinogenesis and development of lung adenocarcinoma[J]. Oncol Lett, 2021, 22(1): 506.
|
32 |
Pekarsky Y, Balatti V, Palamarchuk A, et al. Dysregulation of a family of short noncoding RNAs, tsRNAs, in human cancer[J]. Proc Natl Acad Sci U S A, 2016, 113(18): 5071-5076.
|
33 |
Li JP, Cao C, Fang LF, et al. Serum transfer RNA-derived fragment tRF-31-79MP9P9NH57SD acts as a novel diagnostic biomarker for non-small cell lung cancer[J]. J Clin Lab Anal, 2022. doi: 10.1002/jcla.24492.
|
34 |
Huang LT, Cui M, Silva M, et al. Expression profiles of tRNA-derived fragments and their potential roles in lung adenocarcinoma[J]. Ann Transl Med, 2022, 10(4): 196.
|
35 |
Wang J, Liu X, Cui W, et al. Plasma tRNA-derived small RNAs signature as a predictive and prognostic biomarker in lung adenocarcinoma[J]. Cancer Cell Int, 2022, 22(1): 59.
|
36 |
Hu F, Niu Y, Mao X, et al. tsRNA-5001a promotes proliferation of lung adenocarcinoma cells and is associated with postoperative recurrence in lung adenocarcinoma patients[J].Transl Lung Cancer Res, 2021, 10(10): 3957-3972.
|
37 |
Donahoe M. Acute respiratory distress syndrome: A clinical review[J]. Pulm Circ, 2011, 1(2): 192-211.
|
38 |
Lin Y, Cai J, Huang D, et al. Effects of dexmedetomidine on the expression profile of tsRNAs in LPS-induced acute lung injury[J]. J Clin Lab Anal, 2022, 36(1): e24115.
|
39 |
Meng L, Li L, Lu S, et al. The protective effect of dexmedetomidine on LPS-induced acute lung injury through the HMGB1-mediated TLR4/NF-κB and PI3K/Akt/mTOR pathways[J]. Mol immunol, 2018, 94: 7-17.
|
40 |
Wang W, Zhu L, Li H, et al. Alveolar macrophage-derived exosomal tRF-22-8BWS7K092 activates Hippo signaling pathway to induce ferroptosis in acute lung injury[J]. Int Immunopharmacol, 2022, 107: 108690.
|
41 |
Glezen WP, Taber LH, Frank AL, et al. Risk of primary infection and reinfection with respiratory syncytial virus[J]. Am J Dis Child, 1986, 140(6): 543-546.
|
42 |
Wang Q, Lee I, Ren J, et al. Identification and functional characterization of tRNA-derived RNA fragments (tRFs) in respiratory syncytial virus infection[J]. Mol Ther, 2013, 21(2): 368-379.
|
43 |
Deng J, Ptashkin RN, Chen Y, et al. Respiratory syncytial virus utilizes a tRNA fragment to suppress antiviral responses through a novel targeting mechanism[J]. Mol Ther, 2015, 23(10): 1622-1629.
|
44 |
Zhou J, Liu S, Chen Y, et al. Identification of two novel functional tRNA-derived fragments induced in response to respiratory syncytial virus infection[J]. J Gen Virol, 2017, 98(7): 1600-1610.
|
45 |
谢正德,申昆玲. 儿童呼吸道合胞病毒感染的免疫预防进展[J]. 中华实用儿科临床杂志,2021, 36(24): 1907-1912.
|