切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2022, Vol. 15 ›› Issue (06) : 896 -899. doi: 10.3877/cma.j.issn.1674-6902.2022.06.037

综述

tRNA衍生的小RNA在呼吸系统疾病中的应用研究
刘露梅1, 夏世金2,(), 邓思思1, 韦雅芹2   
  1. 1. 410208 长沙,湖南中医药大学中西医结合学院
    2. 200040 上海,复旦大学附属华东医院上海市老年医学研究所
  • 收稿日期:2022-03-24 出版日期:2022-12-25
  • 通信作者: 夏世金
  • 基金资助:
    国家自然科学基金面上项目(81870044)

Advances in research on the application of tRNA-derived small RNA in respiratory diseases

Lumei Liu1, Shijin Xia2(), Sisi Deng1   

  • Received:2022-03-24 Published:2022-12-25
  • Corresponding author: Shijin Xia
引用本文:

刘露梅, 夏世金, 邓思思, 韦雅芹. tRNA衍生的小RNA在呼吸系统疾病中的应用研究[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 896-899.

Lumei Liu, Shijin Xia, Sisi Deng. Advances in research on the application of tRNA-derived small RNA in respiratory diseases[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2022, 15(06): 896-899.

呼吸系统疾病不仅是影响公共健康的重大问题,也是老年人群主要死亡原因之一[1]。肺癌是最常见的呼吸系统疾病之一,不同类型肿瘤中病死率最高[2,3],其他如哮喘、慢性阻塞性肺疾病、肺结核、肺炎等呼吸系统疾病不仅患病率高,亦给家庭和社会带来巨大经济负担[4,5,6],因此,研究呼吸系统疾病的发病机制、寻找特异性诊断标志物及新的治疗靶点具有重要意义。转运RNA(transferRNA, tRNA)是一类经典的非编码RNA(noncoding RNA, ncRNA),通过识别和转运特定氨基酸而参与蛋白合成[7]。基因调节异常与tRNA的转录后修饰有关,且细胞质内tRNA相关蛋白参与多种疾病进程[8]。随着高通量测序及微阵列技术的发展,越来越多新型小ncRNA被发现。在1979年,tRNA衍生的小RNA(tRNA-derivedsmallRNA, tsRNA)首先在癌症患者中发现[9]。这些tsRNA最开始被认为是tRNA随机降解的产物,然而随着研究的深入,人们发现,tsRNA是通过在成熟tRNA或tRNA前体特定位置的特定核酸酶裂解tRNA的反密码子环产生的[10]

表1 tsRNA数据库
1
Vaz Fragoso CA. Epidemiology of lung disease in older persons[J]. Clin Geriatr Med, 2017, 33(4): 491-501.
2
Bade BC, Dela Cruz CS. Lung Cancer 2020: Epidemiology, etiology,and prevention[J]. Clin Chest Med, 2020, 41(1): 1-24.
3
王洪武,金发光. 晚期非小细胞肺癌多域整合治疗策略[J/CD]. 中华肺部疾病杂志(电子版), 2022, 15(4): 457-461.
4
Maselli DJ, Bhatt SP, Anzueto A, et al. Clinical epidemiology of COPD: Insights from 10 years of the COPD gene study[J]. Chest, 2019, 156(2): 228-238.
5
Stern J, Pier J, Litonjua AA. Asthma epidemiology and risk factors[J]. Semin Immunopathol, 2020, 42(1): 5-15.
6
Ahn DG, Shin HJ, Kim MH, et al. Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID-19)[J]. J Microbiol Biotechnol, 2020, 30(3): 313-324.
7
Banerjee R, Chen S, Dare K, et al. tRNAs: cellular barcodes for amino acids[J]. FEBS letters, 2010, 584(2): 387-395.
8
Abbott J, Francklyn C, Robey-Bond S. Transfer RNA and human disease[J]. Frontiers in genetics, 2014, 5: 158.
9
Speer J, Gehrke C, Kuo K, et al. tRNA breakdown products as markers for cancer[J]. Cancer, 1979, 44(6): 2120-2123.
10
Fu H, Feng J, Liu Q, et al. Stress induces tRNA cleavage by angiogenin in mammalian cells[J]. FEBS letters, 2009, 583(2): 437-442.
11
Li X, Liu X, Zhao D, et al. tRNA-derived small RNAs: novel regulators of cancer hallmarks and targets of clinical application[J]. Cell death discovery, 2021, 7(1): 249.
12
Zhang J, Li L, Luo L, et al. Screening and potential role of tRFs and tiRNAs derived from tRNAs in the carcinogenesis and development of lung adenocarcinoma[J]. Oncology letters, 2021, 22(1): 506.
13
Anderson P, Ivanov P. tRNA fragments in human health and disease[J]. FEBS letters, 2014, 588(23): 4297-304.
14
Zheng L, Xu W, Liu S, et al. tRF2Cancer: A web server to detect tRNA-derived small RNA fragments (tRFs) and their expression in multiple cancers[J]. Nucleic Acids Res, 2016, 44: W185-193.
15
Shen Y, Yu X, Zhu L, et al. Transfer RNA-derived fragments and tRNA halves: biogenesis, biological functions and their roles in diseases[J]. J Mol Med (Berl), 2018, 96(11): 1167-1176.
16
Li S, Xu Z, Sheng J. tRNA-derived small RNA: a novel regulatory small non-coding RNA[J]. Genes, 2018, 9(5): 246.
17
Zhu LW, Ge JX, Li TW, et al. tRNA-derived fragments and tRNA halves: The new players in cancers[J]. Cancer Lett, 2019, 452: 31-37.
18
La Ferlita A, Alaimo S, Veneziano D, et al. Identification of tRNA-derived ncRNAs in TCGA and NCI-60 panel cell lines and development of the public database tRFexplorer[J]. Database (Oxford), 2019, 2019: baz115.
19
Pliatsika V, Loher P, Magee R, et al. MINTbase v2.0: a comprehensive database for tRNA-derived fragments that includes nuclear and mitochondrial fragments from all The Cancer Genome Atlas projects[J]. Nucleic Acids Res, 2018, 46(D1): D152-D159.
20
Loher P, Telonis AG, Rigoutsos I. Accurate profiling and quantification of tRNA fragments from RNA-Seq data: A vade mecum for MINTmap[J]. Methods Mol Biol, 2018, 1680: 237-255.
21
Zuo Z, Hu H, Xu Q, et al. BBCancer: an expression atlas of blood-based biomarkers in the early diagnosis of cancers[J]. Nucleic Acids Res, 2020, 48(D1): D789-D796.
22
Yao D, Sun X, Zhou L, et al. OncotRF: an online resource for exploration of tRNA-derived fragments in human cancers[J]. RNA Biol, 2020, 17(8): 1081-1091.
23
Zuo Y, Zhu L, Guo Z, et al. tsRBase: a comprehensive database for expression and function of tsRNAs in multiple species[J]. Nucleic Acids Res, 2021, 49(D1): D1038-D1045.
24
Wang JH, Chen WX, Mei S Q, et al. tsRFun: a comprehensive platform for decoding human tsRNA expression, functions and prognostic value by high-throughput small RNA-Seq and CLIP-Seq data[J]. Nucleic Acids Res, 2022, 50(D1): D421-D431.
25
Maute RL, Schneider C, Sumazin P, et al. tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma[J]. Proc Natl Acad Sci U S A, 2013, 110(4): 1404-1409.
26
Shao Y, Sun Q, Liu X, et al. tRF-Leu-CAG promotes cell proliferation and cell cycle in non-small cell lung cancer[J]. Chem Biol Drug Des, 2017, 90(5): 730-738.
27
Saikia M, Jobava R, Parisien M, et al. Angiogenin-cleaved tRNA halves interact with cytochrome c, protecting cells from apoptosis during osmotic stress[J]. Mol Cell Biol, 2014, 34(13): 2450-2463.
28
Wu F, Wang L, Zhou C. Lung cancer in China: current and prospect [J]. Curr Opin Oncol, 2021, 33(1): 40-46.
29
Hwang SK, Chang SH, Minai-Tehrani A, et al. Lentivirus-AIMP2-DX2 shRNA suppresses cell proliferation by regulating Akt1 signaling pathway in the lungs of AIMP2?/? mice[J]. J Aerosol Med Pulm Drug Deliv, 2013, 26(3): 165-173.
30
Balatti V, Nigita G, Veneziano D, et al. tsRNA signatures in cancer[J]. Proc Natl Acad Sci U S A, 2017, 114(30): 8071-8076.
31
Zhang J, Li L, Luo L, et al. Screening and potential role of tRFs and tiRNAs derived from tRNAs in the carcinogenesis and development of lung adenocarcinoma[J]. Oncol Lett, 2021, 22(1): 506.
32
Pekarsky Y, Balatti V, Palamarchuk A, et al. Dysregulation of a family of short noncoding RNAs, tsRNAs, in human cancer[J]. Proc Natl Acad Sci U S A, 2016, 113(18): 5071-5076.
33
Li JP, Cao C, Fang LF, et al. Serum transfer RNA-derived fragment tRF-31-79MP9P9NH57SD acts as a novel diagnostic biomarker for non-small cell lung cancer[J]. J Clin Lab Anal, 2022. doi: 10.1002/jcla.24492.
34
Huang LT, Cui M, Silva M, et al. Expression profiles of tRNA-derived fragments and their potential roles in lung adenocarcinoma[J]. Ann Transl Med, 2022, 10(4): 196.
35
Wang J, Liu X, Cui W, et al. Plasma tRNA-derived small RNAs signature as a predictive and prognostic biomarker in lung adenocarcinoma[J]. Cancer Cell Int, 2022, 22(1): 59.
36
Hu F, Niu Y, Mao X, et al. tsRNA-5001a promotes proliferation of lung adenocarcinoma cells and is associated with postoperative recurrence in lung adenocarcinoma patients[J].Transl Lung Cancer Res, 2021, 10(10): 3957-3972.
37
Donahoe M. Acute respiratory distress syndrome: A clinical review[J]. Pulm Circ, 2011, 1(2): 192-211.
38
Lin Y, Cai J, Huang D, et al. Effects of dexmedetomidine on the expression profile of tsRNAs in LPS-induced acute lung injury[J]. J Clin Lab Anal, 2022, 36(1): e24115.
39
Meng L, Li L, Lu S, et al. The protective effect of dexmedetomidine on LPS-induced acute lung injury through the HMGB1-mediated TLR4/NF-κB and PI3K/Akt/mTOR pathways[J]. Mol immunol, 2018, 94: 7-17.
40
Wang W, Zhu L, Li H, et al. Alveolar macrophage-derived exosomal tRF-22-8BWS7K092 activates Hippo signaling pathway to induce ferroptosis in acute lung injury[J]. Int Immunopharmacol, 2022, 107: 108690.
41
Glezen WP, Taber LH, Frank AL, et al. Risk of primary infection and reinfection with respiratory syncytial virus[J]. Am J Dis Child, 1986, 140(6): 543-546.
42
Wang Q, Lee I, Ren J, et al. Identification and functional characterization of tRNA-derived RNA fragments (tRFs) in respiratory syncytial virus infection[J]. Mol Ther, 2013, 21(2): 368-379.
43
Deng J, Ptashkin RN, Chen Y, et al. Respiratory syncytial virus utilizes a tRNA fragment to suppress antiviral responses through a novel targeting mechanism[J]. Mol Ther, 2015, 23(10): 1622-1629.
44
Zhou J, Liu S, Chen Y, et al. Identification of two novel functional tRNA-derived fragments induced in response to respiratory syncytial virus infection[J]. J Gen Virol, 2017, 98(7): 1600-1610.
45
谢正德,申昆玲. 儿童呼吸道合胞病毒感染的免疫预防进展[J]. 中华实用儿科临床杂志2021, 36(24): 1907-1912.
[1] 胡贵容, 王伟, 蔡强, 谢亮, 刘瀚旻. 雾化吸入治疗中一种新兴雾化装置选择:振动筛网雾化器[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(06): 636-642.
[2] 陈玉莲, 刘瀚旻. 人体生命早期呼吸系统菌群与肺部微生物组发育特征及早期菌群稳态研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(01): 31-37.
[3] 李琛, 张惟佳, 潘亚萍. 牙周炎与系统性疾病之间关系的应用思考:2022年EFP和WONCA欧洲分部联合研讨会共识报告的解读及启示[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 322-327.
[4] 黄利, 唐楠, 廖秀清, 王导新. 冷冻活检在呼吸系统疾病中的应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 121-124.
[5] 韩璐瑶, 吴克坚, 高永恒, 鱼高乐, 李志超, 王在强, 高彦军, 林红卫, 金发光. 不同大气污染物对呼吸系统疾病门诊量的影响[J]. 中华肺部疾病杂志(电子版), 2020, 13(02): 229-235.
[6] 刘凌琳, 章陈晨, 熊玮. 重庆市近三年空气湿度、PM2.5及气温水平对老年呼吸系统疾病的影响[J]. 中华肺部疾病杂志(电子版), 2020, 13(01): 72-74.
[7] 韩璐瑶, 金发光. 西安市大气污染物影响人群健康的现状[J]. 中华肺部疾病杂志(电子版), 2019, 12(06): 783-785.
阅读次数
全文


摘要