切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2022, Vol. 15 ›› Issue (06) : 900 -903. doi: 10.3877/cma.j.issn.1674-6902.2022.06.038

综述

慢性阻塞性肺疾病临床及影像学表型研究进展
罗洁君1, 管宇1, 范丽1, 刘士远1,()   
  1. 1. 200003 上海,海军军医大学第二附属医院放射诊断科
  • 收稿日期:2022-05-11 出版日期:2022-12-25
  • 通信作者: 刘士远
  • 基金资助:
    国家自然科学基金重点项目(81930049); 国家自然科学基金面上项目(82171926、81871321)

Progress in clinical and imaging phenotyping of chronic obstructive pulmonary disease

Jiejun Luo1, Yu Guan1, Li Fan1   

  • Received:2022-05-11 Published:2022-12-25
引用本文:

罗洁君, 管宇, 范丽, 刘士远. 慢性阻塞性肺疾病临床及影像学表型研究进展[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 900-903.

Jiejun Luo, Yu Guan, Li Fan. Progress in clinical and imaging phenotyping of chronic obstructive pulmonary disease[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2022, 15(06): 900-903.

慢性阻塞性肺疾病(chronic obstructive pulmonary disease, COPD)是常见的慢性呼吸系统疾病,具有高度异质性和多系统性,体现在临床及影像诊断、急性加重情况、药物及康复治疗及预后等方面,仅凭肺功能已无法准确解释不同患者的疾病特征,COPD表型已成为研究热点,依据患者的疾病特征、治疗和预后反应可划分为不同的临床及影像学表型。随着医疗体系多学科合作模式的发展,影像检查技术的快速迭代,表型区分可更好实现个性化诊疗。

1
Corlateanu A, Mendez Y, Wang Y, et al. "Chronic obstructive pulmonary disease and phenotypes: a state-of-the-art." [J]. Pulmonol, 2020, 26(2): 95-100.
2
Mekov E, Nuñez A A-O, Sin D A-O, et al. Update on Asthma-COPD Overlap (ACO): A narrative review[J]. Int J Chronic Obstruct Pulmon Dis 2021 16: 1783-99.
3
Vestbo JD, Frcp. COPD: definition and phenotypes[J]. Clin Chest Med, 2014, 35(1): 1-6.
4
Hurst JR, Donaldson GC, Quint JK, et al. Temporal clustering of exacerbations in chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2009, 179(5): 369-374.
5
Jørgen Vestbo, Lisa D Edwards, Paul D Scanlon, et al. Changes in forced expiratory volume in 1 second over time in COPD[J]. New England J Med, 2011, 365(13): 1184-1192.
6
Leem AY, Park B, Kim YS, et al. Longitudinal decline in lung function: a community-based cohort study in Korea[J]. Sci Rep, 2019, 9(1): 13614.
7
Vasilis Nikolaou, Sebastiano Massaro, Wolfgang Garn, et al. Fast decliner phenotype of chronic obstructive pulmonary disease (COPD): applying machine learning for predicting lung function loss[J]. BMJ Open Respir Res, 2021, 8(1): e000980.
8
Masaru Suzuki, Hironi Makita, Satoshi Konno, et al. Annual change in FEV(1) in elderly 10-year survivors with established chronic obstructive pulmonary disease[J]. Sci Rep, 2019, 9(1): 2073.
9
Barbara Kuznar-Kaminska, Justyna Mikua-Pietrasik, Krzysztof Ksiazek,et al. Lung cancer in chronic obstructive pulmonary disease patients: importance of cellular senescence[J]. Pol Arch Intern Med, 2018, 128(7-8): 462-468.
10
Yasutaka Nakano, Jonathan C Wong, Pim A de Jong, et al. The prediction of small airway dimensions using computed tomography[J]. Am J Respir Crit Care Med, 2005, 171(2): 142-146.
11
Kitaoka H, Kijima T. What is "functional small airway disease" in inspiratory and expiratory CT images?[J]. Respir Investig, 2021, 59(1): 157-158.
12
Fujimoto K, Kitaguchi Y, Kubo K, et al. Clinical analysis of chronic obstructive pulmonary disease phenotypes classified using high-resolution computed tomography[J]. Respirol, 2006, 11(6): 731-740.
13
Lee JH, Lee YK, Kim EK, et al. Responses to inhaled long-acting beta-agonist and corticosteroid according to COPD subtype[J]. Respir Med, 2010, 104(4): 542-549.
14
Deepak R Subramanian, Sumit Gupta, Dorothe Burggraf, et al. Emphysema- and airway-dominant COPD phenotypes defined by standardised quantitative computed tomography[J]. Eur Respir J, 2016, 48(1): 92-103.
15
Jeong Uk Lim, Eun Kyung Kim, Seong Yong Lim, et al. Mixed phenotype of emphysema and airway wall thickening is associated with frequent exacerbation in chronic obstructive pulmonary disease patients[J]. Int J Chron Obstruct Pulmon Dis, 2019, 14: 3035-3042.
16
David A Lynch, John H M Austin, James C Hogg, et al. CT-definable subtypes of chronic obstructive pulmonary disease: A statement of the fleischner society[J]. Radiol, 2015, 277(1): 192-205.
17
Park J, Hobbs BD, Crapo JD, et al. Subtyping COPD by using visual and quantitative CT imaging features[J]. Chest, 2020, 157(1): 47-60.
18
Chauhan NS, Sood D, Takkar P, et al. Quantitative assessment of airway and parenchymal components of chronic obstructive pulmonary disease using thin-section helical computed tomography[J]. Pol J Radiol, 2019, 84: e54-e60.
19
Nambu A, Zach J, Schroeder J, et al. Quantitative computed tomography measurements to evaluate airway disease in chronic obstructive pulmonary disease: Relationship to physiological measurements, clinical index and visual assessment of airway disease[J]. Eur J Radiol, 2016, 85(11): 2144-2151.
20
Grydeland TB, Dirksen A, Coxson HO, et al. Quantitative computed tomography: emphysema and airway wall thickness by sex, age and smoking[J]. Eur Respir J, 2009, 34(4): 858-865.
21
Weikert T, Friebe L, Wilder-Smith A, et al. Automated quantification of airway wall thickness on chest CT using retina U-Nets-Performance evaluation and application to a large cohort of chest CTs of COPD patients[J]. Eur J Radiol, 2022, 155: 110460.
22
Jean-Paul Charbonnier, Esther Pompe, Camille Moore, et al. Airway wall thickening on CT: Relation to smoking status and severity of COPD[J]. Respir Med, 2019, 146: 36-41.
23
Alexander A Bankier, Cornelia Schaefer-Prokop, Viviane De Maertelaer,et al. Air trapping: comparison of standard-dose and simulated low-dose thin-section CT techniques[J]. Radiology, 2007, 242(3): 898-906.
24
Arakawa H, Webb WR. Air trapping on expiratory high-resolution CT scans in the absence of inspiratory scan abnormalities: correlation with pulmonary function tests and differential diagnosis[J]. AJR Am J Roentgenol, 1998, 170(5): 1349-1353.
25
Benjamin A Hoff, Esther Pompe, Stefanie Galbán, et al. CT-based local distribution metric improves characterization of COPD[J]. Sci Rep, 2017, 7(1): 2999.
26
Miranda Kirby, Youbing Yin, Juerg Tschirren, et al. A novel method of estimating small airway disease using inspiratory-to-expiratory computed tomography[J]. Respiration, 2017, 94(4): 336-345.
27
Bian Z, Charbonnier JP, Liu J, et al. Small airway segmentation in thoracic computed tomography scans: a machine learning approach[J]. Phys Med Biol, 2018, 63(15): 155024.
28
Antonio Garcia-Uceda, Raghavendra Selvan, Zaigham Saghir, et al. Automatic airway segmentation from computed tomography using robust and efficient 3-D convolutional neural networks[J]. Sci Rep, 2021, 11(1): 16001.
29
Ivan Dudurych, Antonio Garcia-Uceda, Zaigham Saghir, et al. Creating a training set for artificial intelligence from initial segmentations of airways[J]. Eur Radiol Exp, 2021, 5(1): 54.
30
Thibaut Capron, Arnaud Bourdin, Thierry Perez, et al. COPD beyond proximal bronchial obstruction: phenotyping and related tools at the bedside[J]. Eur Respir Rev, 2019, 28(152): 190010.
31
Gabor Kovacs, Alvar Agusti, Joan Albert Barberà,et al. Pulmonary vascular involvement in chronic obstructive pulmonary disease. Is there a pulmonary vascular phenotype?[J]. Am J Respir Crit Care Med, 2018, 198(8): 1000-1011.
32
陈 琰,钱 频,袁 琳,等. 慢性阻塞性肺疾病肺外合并症的治疗现状和研究进展[J/CD]. 中华肺部疾病杂志(电子版), 2020, 13(1): 100-103.
33
John D Maclay, David A McAllister, Nicholas L Mills, et al. Vascular dysfunction in chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2009, 180(6): 513-520.
34
Santos S, Peinado VI, Ramírez J, et al. Characterization of pulmonary vascular remodelling in smokers and patients with mild COPD[J]. Eur RespiratJ, 2002, 19(4): 632-638.
35
Marius M Hoeper, Joan Albert Barberà, Richard N Channick, et al. Diagnosis, assessment, and treatment of non-pulmonary arterial hypertension pulmonary hypertension[J]. J Am Coll Cardiol, 2009, 54(1 Suppl): S85-S96.
36
Seiichiro Sakao, Norbert F Voelkel, Koichiro Tatsumi. The vascular bed in COPD: pulmonary hypertension and pulmonary vascular alterations[J]. Eur Respir Rev, 2014, 23(133): 350-355.
37
Shin Matsuoka, George R Washko, Tsuneo Yamashiro, et al. Pulmonary hypertension and computed tomography measurement of small pulmonary vessels in severe emphysema[J]. Am J Respir Crit Care Med, 2010, 181(3): 218-225.
38
George R Washko, Pietro Nardelli, Samuel Y Ash, et al. Arterial vascular pruning, right ventricular size, and clinical outcomes in chronic obstructive pulmonary disease. A longitudinal observational study[J]. Am J Respir Crit Care Med, 2019, 200(4): 454-461.
39
Cho YH, Lee SM, Seo JB, et al. Quantitative assessment of pulmonary vascular alterations in chronic obstructive lung disease: Associations with pulmonary function test and survival in the KOLD cohort[J]. Eur J Radiol, 2018, 108: 276-282.
40
Sang Won Park, Myoung-Nam Lim, Woo Jin Kim, et al. Quantitative assessment the longitudinal changes of pulmonary vascular counts in chronic obstructive pulmonary disease[J]. Respir Res, 2022, 23(1): 29.
41
Vincent Tedjasaputra, Sean van Diepen, Devin B Phillips, et al. Pulmonary capillary blood volume response to exercise is diminished in mild chronic obstructive pulmonary disease[J]. Respir Med, 2018, 145: 57-65.
42
Katja Hueper, Jens Vogel-Claussen, Megha A Parikh, et al. Pulmonary microvascular blood flow in mild chronic obstructive pulmonary disease and emphysema. The MESA COPD study[J]. Am J Respir Crit Care Med, 2015, 192(5): 570-580.
43
David A Lynch, Camille M Moore, Carla Wilson, et al. CT-based visual classification of emphysema: Association with mortality in the COPDGene study[J]. Radiology, 2018, 288(3): 859-866.
44
Samuel Y Ash, Raúl San José Estépar, Sean B Fain, et al. Relationship between emphysema progression at CT and mortality in ever-smokers: results from the COPDGene and ECLIPSE cohorts[J]. Radiology, 2021, 299(1): 222-231.
45
黄宇婷,刘 翱. 慢性阻塞性肺疾病患者影像学表型的临床治疗及疗效探究[J/CD]. 中华肺部疾病杂志(电子版), 2016, 9(1): 51-55.
46
Francesco Blasi, Luca Neri, Stefano Centanni, et al. Clinical characterization and treatment patterns for the frequent exacerbator phenotype in chronic obstructive pulmonary disease with severe or very severe airflow limitation[J]. J Chronic Obstruct Pulmon Dis, 2017, 14(1): 15-22.
47
Meilan K Han, Ella A Kazerooni, David A Lynch, et al. Chronic obstructive pulmonary disease exacerbations in the COPDGene study: associated radiologic phenotypes[J]. Radiology, 2011, 261(1): 274-282.
48
George R Washko, Pietro Nardelli, Samuel Y Ash, et al. Smaller left ventricle size at noncontrast CT is associated with lower mortality in COPDGene participants[J]. Radiology, 2020, 296(1): 208-215.
[1] 周杉京, 诸葛金科, 王芳芳. 补肺活血胶囊对COPD患者cCor、ALD、Ang-Ⅱ的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 517-519.
[2] 吴庆华, 冒勇, 闫效坤. AECOPD并发AKI的危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 529-531.
[3] 芦丹, 杨硕, 刘旭. VEGF、HMGB1、hs-CRP/Alb在AECOPD伴呼吸衰竭中的变化及预后分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 532-534.
[4] 熊锋, 娄建丽. 慢性阻塞性肺疾病急性加重期预后的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 550-553.
[5] 王庆, 张红联, 吴志勇. COPD合并多重耐药菌肺部感染预后危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 557-559.
[6] 林静, 陈芳, 刘小霞. COPD患者认知功能障碍影响因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 569-571.
[7] 张七妹, 麦宜准, 蒋浩波. 喘可治对慢性阻塞性肺疾病缓解期的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 578-580.
[8] 张林, 刘芳, 赵静, 刘勇, 周青. 远程康复在慢性阻塞性肺疾病患者肺康复中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 601-604.
[9] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[10] 徐丽玲, 卢玉宝, 赵彦, 任利, 李姝艺, 符娟, 康玲, 汪青松, 尤再春. COPD管理云平台的构建及临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 481-484.
[11] 李海明, 刘鸿飞, 李俊. 血清脂蛋白酶水平与COPD患者骨骼肌质量减少的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 500-503.
[12] 廖玥, 王可, 秦江月, 吴艳秋, 陈俊, 汪涛, 文富强, 王浩. 丹龙口服液治疗轻中度慢性阻塞性肺疾病急性加重期的多中心及前瞻性研究[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 306-311.
[13] 张译梵, 张海华, 王瑛, 高贵洲, 王晓东, 屈林, 张涛. 陕西省成人慢性阻塞性肺疾病危险因素及预测模型[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 312-317.
[14] 宣瑞萍, 刘笑琴, 王平, 查日田. 无创正压通气与经鼻高流量氧疗治疗AECOPD合并Ⅱ型呼吸衰竭的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 346-348.
[15] 刘霞, 何婷媚, 吴映南, 崔文佳. 南通地区非吸烟COPD患者肺癌患病风险及相关影响因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 367-369.
阅读次数
全文


摘要