切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2023, Vol. 16 ›› Issue (02) : 156 -163. doi: 10.3877/cma.j.issn.1674-6902.2023.02.002

论著

hAMSCs调控MAPK信号通路对急性肺损伤AQP1的影响
李埝1, 赵建军1,(), 张建勇1, 赵睿桢1   
  1. 1. 563000 遵义,遵义医科大学附属医院呼吸与危重症医学科呼吸二病区
  • 收稿日期:2023-01-17 出版日期:2023-04-25
  • 通信作者: 赵建军
  • 基金资助:
    黔科合支撑([2020]4Y162号)

Effect of human amniotic mesenchymal stem cell regulating MAPK signaling pathway of aquaporin 1 in acute lung injury

nian Li1, Jianjun Zhao1,(), Jianyong Zhang1, Ruizhen Zhao1   

  1. 1. The Second Ward, Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
  • Received:2023-01-17 Published:2023-04-25
  • Corresponding author: Jianjun Zhao
引用本文:

李埝, 赵建军, 张建勇, 赵睿桢. hAMSCs调控MAPK信号通路对急性肺损伤AQP1的影响[J/OL]. 中华肺部疾病杂志(电子版), 2023, 16(02): 156-163.

nian Li, Jianjun Zhao, Jianyong Zhang, Ruizhen Zhao. Effect of human amniotic mesenchymal stem cell regulating MAPK signaling pathway of aquaporin 1 in acute lung injury[J/OL]. Chinese Journal of Lung Diseases(Electronic Edition), 2023, 16(02): 156-163.

目的

分析人羊膜间充质干细胞(human amniotic mesenchymal stromal cells, hAMSCs)移植后对急性肺损伤(acute lung injury, ALI)大鼠肺组织水通道蛋白1(AQP1)和磷酸化p38丝裂原活化蛋白激酶(p-p38MAPK)表达的影响及对肺损伤的作用机制。

方法

随机将84只SD雄性大鼠分为4组(n=21):生理盐水对照组(NS组)、LPS诱导ALI模型组(LPS组)、hAMSCs对照组(NH组)及hAMSCs干预组(LH组)。LPS组和LH组大鼠通过舌下静脉注射LPS(4 mg/kg)造模;NS组和NH组大鼠通过舌下静脉注射250 μl生理盐水,2 h后NH组和LH组大鼠通过尾静脉注射250 μl经DAPI标记的hAMSCs(2.5×106个);NS组和LPS组大鼠通过尾静脉注射250 μl生理盐水。每组分别于6 h、12 h、72 h随机处死7只大鼠观察hAMSCs在每组中的定植情况、肺组织病理形态,湿干重比值(W/D),Elisa法检测BALF中TNF-α、IL-1β水平,IHC及WB法检测各组大鼠肺组织AQP1、p38MAPK和p-p38 MAPK的表达。

结果

①NH和LH组大鼠肺泡周围有蓝色荧光标记的hAMSCs, LH组分布较多,NH组分布较少;②NS组、NH组对应时相点的大鼠肺组织病理评分、W/D比值、BALF中TNF-α和IL-1β水平、AQP1和p-p38 MAPK蛋白表达量相比较无显著性差异(P>0.05);③与NS组、NH组时相点相比较,LPS组、LH组对应时相点大鼠肺组织病理评分、W/D比值、BALF中TNF-α、IL-1β水平和p-p38 MAPK蛋白表达量升高,AQP1表达量降低(P<0.05);④LPS 6 h组与12 h组大鼠肺组织病理评分、W/D比值、BALF中TNF-α和IL-1β水平、AQP1和p-p38 MAPK蛋白表达量无明显差异(P>0.05);与LPS 6 h组、12 h组相比较,LPS 72 h组大鼠肺组织病理评分、W/D比值、BALF中IL-1β和TNF-α水平、p-p38 MAPK蛋白表达量降低,AQP1表达量升高(P<0.05);LH 6 h组与12 h组大鼠肺组织病理评分、W/D比值、BALF中IL-1β和TNF-α水平、AQP1和p-p38 MAPK蛋白表达量无明显差异(P>0.05);与LH 6 h组、12 h组相比较,LH 72 h组大鼠肺组织病理评分、W/D比值、BALF中IL-1β和TNF-α水平、p-p38 MAPK蛋白表达量降低,AQP1表达量升高(P<0.05);LH组与LPS组时相点相比,大鼠肺组织病理评分、W/D比值、BALF中TNF-α和IL-1β水平、p-p38 MAPK蛋白表达量降低,AQP1表达量升高(P<0.05);⑤每组时相点大鼠肺组织p38 MAPK表达量相比较无明显差异(P>0.05)。

结论

①外源性hAMSCs能归巢并定植于受损伤肺组织;②hAMSCs可抑制p38 MAPK激活,减少炎症因子TNF-α、IL-1β释放,减轻肺部炎症反应;③hAMSCs静脉移植可上调肺组织AQP1表达,加强肺泡液体清除能力,减轻肺损伤。

Objective

To investigate the effect of the transplantation of human amniotic mesenchymal stem cell (hAMSCs) on the expressions of Aquaporin 1 (AQP1) and phosphorylated p38 mitogen activated protein kinase (p-p38MAPK) in lung tissue of rats with acute lung injury (ALI), and to further explore whether it can alleviate lung injury and its possible mechanism.

Methods

84 male SD rats were divided into 4 groups (n=21): normal saline control group (NS group), LPS induced ALI model group (LPS group), hAMSCs control group (NH group) and hAMSCs intervention group (LH group). The rats in LPS group and LH group were injected with LPS (4 mg/kg) through a sublingual vein to create models. NS group and NH group were injected with 250μl normal saline through a sublingual vein, and two hours later NH group and LH group were injected with 250μl DAP-labeled hAMSCs (2.5×106) through a caudal vein. NS group and LPS group were injected with 250μl normal saline through a caudal vein. Seven rats in each group were killed at 6 h, 12 h and 72 h in order to observe the colonization of hAMSCs in the lung tissue of rats, the pathological morphology of lung tissue and the lung wet/dry weight (W/D) ratio. Furthermore, the levels of tumor necrosis factor-α (TNF-α) and interleukin- 1β (IL-1β) in bronchoalveolar lavage fluid(BALF) of rats in each group were detected by enzyme linked immunosorbent assay (ELISA). Immunohistochemistry (IHC) and western blot (WB) was used to detect the expressions of AQP1, p38 MAPK and p-p38 MAPK in the lung tissue of each group.

Results

①Under the fluorescence microscope, it could be observed that there were blue fluorescent labeled hAMSCs around the alveoli of rats in NH and LH groups. Among them, the distribution of hAMSCs in LH group is more than that in NH group, indicating that hAMSCs can " homing" and colonize in the injured lung tissue. ②There was no significant difference in lung histopathological score, W/D ratio, TNF-α and IL-1 β levels in BALF, AQP1 and p-p38 MAPK protein expressions between NS group and NH group at each time point (P>0.05). ③Compared with the NS group and NH group at each time point, the LPS group and LH group showed an increase in lung histopathological score, W/D ratio, TNF-α and IL- 1 β levels in BALF, and p-p38 MAPK protein expression, and decrease in AQP1 expression at corresponding time points (P<0.05). ④Intra-group comparison of the LPS group revealed that there was no significant difference in lung histopathological score, W/D ratio, TNF-α and IL- 1 β levels in BALF, AQP1 and p-p38 MAPK protein expressions at the time points of 6 h and 12 h (P>0.05). Compared with LPS 6 h group and the LPS 12 h group, LPS 72 h group exhibited a decrease in lung histopathological score, W/D ratio, TNF-α and IL- 1 β levels in BALF, and p-p38 MAPK protein expression, and increase in AQP1 expression (P<0.05). Furthermore, there was no significant difference in lung histopathological score, W/D ratio, TNF-α and IL- 1 β levels in BALF, AQP1 and p-p38 MAPK protein expression between LH 6 h group and LH 12 h group (P>0.05). Compared with the 6 h and 12 h LH groups, LH 72 h group revealed a decrease in lung histopathological score, W/D ratio, TNF-α and IL- 1 β levels in BALF, and p-p38 MAPK protein expression, while the expression level of AQP1 was increased (P<0.05). Compared with the LPS group at each time point, lung histopathological score, W/D ratio, levels of TNF-α and IL-1β in BALF and expression of P-P38 MAPK protein were decreased in LH group, while AQP1 expression was increased (P<0.05). ⑤There were no significant difference in the expression of p38 MAPK in lung tissue at each time point among all groups (P>0.05).

Conclusions

①There is a homing and colonization of exogenous hAMSCs in the injured lung tissue. ②hAMSCs can inhibit the activation of p38 MAPK, decrease the release of inflammatory factors TNF-α and IL- 1β, and alleviate pulmonary inflammatory response. ③Intravenous transplantation of hAMSCs can upregulate the expression of AQP1 in lung tissue to enhance alveolar fluid clearance, so as to alleviate lung injury.

图1 各组大鼠肺组织W/D比值(*P<0.05)
图2 大鼠肺组织HE染色病理学变化;注:1:NS组;2:NH组;3: LPS 6 h组;4: LPS 12 h组;5: LPS 72 h组;6: LH 6 h组;7: LH 12 h组;8: LH 72 h组);*P<0.05
图3 每组大鼠BALF中TNF-α、IL-1β水平
图4 每组大鼠肺组织AQP1(A)、p38 MAPK(B)、p-p38 MAPK蛋白(C)表达。注:1:空白对照;2:NS组;3:NH组;4:LPS 6 h组;5:LPS 12 h组;6:LPS 72 h组;7:LH 6 h组;8:LH 12 h组;9:LH 72 h组;与NS组相比,*P<0.05;与NH组相比,#:P<0.05;与LPS 6 h组相比,a:P<0.05,△P<0.05;与LPS 12 h组相比,b:P<0.05,▽:P<0.05;与LPS 72 h组相比,c:P<0.05;与LH 6 h组相比,▲:P<0.05;与LH 12 h组相比,▼:P<0.05
图5 WB法检测各蛋白表达。注:1:NS组;2:NH组;3:LPS 6 h组;4:LPS 12 h组;5:LPS 72 h组;6:LH 6 h组;7:LH 12 h组;8:LH 72 h组;与NS组相比,*:P<0.05;与NH组相比,#:P<0.05;与LPS 6 h组相比,a:P<0.05,△:P<0.05;与LPS 12 h组相比,b:P<0.05,▽:P<0.05;与LPS 72 h组相比,c:P<0.05;与LH 6 h组相比,▲:P<0.05;与LH 12 h组相比,▼:P<0.05
1
马李杰,李王平,金发光. 急性肺损伤/急性呼吸窘迫综合征发病机制的研究进展[J/CD]. 中华肺部疾病杂志(电子版), 2013, 6(1): 65-68.
2
施 卉,任成山. 急性肺损伤/急性呼吸窘迫综合征基础及临床研究进展[J/CD]. 中华肺部疾病杂志(电子版), 2013, 6(4): 350-355.
3
Liu C, Xiao K, Xie L. Advances in the use of exosomes for the treatment of ALI/ARDS[J]. Front Immunol, 2022, 13: 971189.
4
Derwall M, Martin L, Rossaint R. The acute respiratory distress syndrome: pathophysiology, current clinical practice, and emerging therapies[J]. Expert Rev Respir Med, 2018, 12(12): 1021-1029.
5
Long ME, Mallampalli RK, Horowitz JC. Pathogenesis of pneumonia and acute lung injury[J]. Clin Sci (Lond), 2022, 136(10): 747-769.
6
何 静,郭 玲,赵 庆,等. 间充质干细胞治疗急性肺损伤的研究进展[J]. 中国临床医生杂志2022, 50(6): 651-654.
7
Anan HH, Zidan RA, Shaheen MA, et al. Therapeutic efficacy of bone marrow derived mesenchymal stromal cells versus losartan on adriamycin-induced renal cortical injury in adult albino rats[J]. Cytotherapy, 2016, 18(8): 970-984.
8
Su W, Cao R, Zhang XY, et al. Aquaporins in the kidney: physiology and pathophysiology[J]. Am J Physiol Renal Physiol, 2020, 318(1): F193-F203.
9
Tsushima K, King LS, Aggarwal NR, et al. Acute lung injury review[J]. Intern Med, 2009, 48(9): 621-630.
10
Liu L, Xie C. Effects of downregulation of aquaporin1 by peptidoglycan and lipopolysaccharide via MAPK pathways in MeT-5A cells[J]. Lung, 2011, 189(4): 331-340.
11
Li J, Xu M, Fan Q, et al. Tanshinone ⅡA ameliorates seawater exposure-induced lung injury by inhibiting aquaporins (AQP) 1 and AQP5 expression in lung[J]. Respir Physiol Neurobiol, 2011, 176(1-2): 39-49.
12
Cui P, Xin H, Yao Y, et al. Human amnion-derived mesenchymal stem cells alleviate lung injury induced by white smoke inhalation in rats[J]. Stem Cell Res Ther, 2018, 9(1): 101.
13
Matute-Bello G, Downey G, Moore BB, et al. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals[J]. Am J Respir Cell Mol Biol, 2011, 44(5): 725-738.
14
Palakshappa JA, Krall JTW, Belfield LT, et al. Long-term outcomes in acute respiratory distress syndrome: Epidemiology, mechanisms, and patient evaluation[J]. Crit Care Clin, 2021, 37(4): 895-911.
15
Xunian Z, Kalluri R. Biology and therapeutic potential of mesenchymal stem cell-derived exosomes[J]. Cancer Sci, 2020, 111(9): 3100-3110.
16
Lian J, Lin J, Zakaria N, et al. Acute lung injury: Disease modelling and the therapeutic potential of stem cells[J]. Adv Exp Med Biol, 2020, 1298: 149-166.
17
伍冬冬,潘频华,覃庆武. 急性肺损伤/急性呼吸窘迫综合征发病机制研究进展[J]. 中华结核和呼吸杂志2015, 38(7): 524-527.
18
Vassiliou AG, Manitsopoulos N, Kardara M, et al. Differential expression of aquaporins in experimental models of acute lung injury[J]. In Vivo, 2017, 31(5): 885-894.
19
沈慧萍,麻海英,洒玉萍,等. 水通道蛋白1、5与肺水肿相关性研究进展[J]. 中国医学创新2021, 18(10): 181-184.
20
Wang T, Liu C, Pan LH, et al. Inhibition of p38 MAPK mitigates lung ischemia reperfusion injury by reducing blood-air barrier hyperpermeability[J]. Front Pharmacol, 2020, 11: 569251.
21
Liu L, Du L, Chen Y, et al. Down-regulation of Aquaporin1 (AQP1) by peptidoglycan via p38 MAPK pathways in primary rat pleural mesothelial cells[J]. Exp Lung Res, 2014, 40(4): 145-153.
22
郭树明,脱承德,孟祥云. 宣白承气汤联合复合乳酸菌治疗脓毒症相关性ARDS的疗效分析[J]. 时珍国医国药2021, 32(1): 135-137.
23
Domscheit H, Hegeman MA, Carvalho N, et al. Molecular dynamics of lipopolysaccharide-induced lung injury in rodents[J]. Front Physiol, 2020, 11: 36.
24
Brooks D, Barr LC, Wiscombe S, et al. Human lipopolysaccharide models provide mechanistic and therapeutic insights into systemic and pulmonary inflammation[J]. Eur Respir J, 2020, 56(1): 1901298.
25
Nova Z, Skovierova H, Calkovska A. Alveolar-capillary membrane-related pulmonary cells as a target in endotoxin-induced acute lung injury[J]. Int J Mol Sci, 2019, 20(4): 831.
26
宣国平,张 琳,钟明媚. 脂多糖致大鼠急性肺损伤模型取材时间选择[J]. 中华实用诊断与治疗杂志2015, 29(2): 136-138.
27
王显峰,白萨日娜. 脂多糖致小鼠急性肺损伤模型给药剂量和时间的筛选[J]. 中国兽医杂志2021, 57(1): 79-82+134.
28
Liang W, Guo L, Liu T, et al. MEF2C alleviates acute lung injury in cecal ligation and puncture (CLP)-induced sepsis rats by up-regulating AQP1[J]. Allergol Immunopathol (Madr), 2021, 49(5): 117-124.
29
Xu J, Huang B, Wang Y, et al. Emodin ameliorates acute lung injury induced by severe acute pancreatitis through the up-regulated expressions of AQP1 and AQP5 in lung[J]. Clin Exp Pharmacol Physiol, 2016, 43(11): 1071-1079.
30
Sun Y, Xia Y, Liu X, et al. Dexmedetomidine alleviates LPSinduced acute lung injury via regulation of the p38/HO1 pathway[J]. Mol Med Rep, 2020, 22(3): 2442-2450.
31
Wang WB, Li JT, Hui Y, et al. Combination of pseudoephedrine and emodin ameliorates LPS-induced acute lung injury by regulating macrophage M1/M2 polarization through the VIP/cAMP/PKA pathway[J]. Chin Med, 2022, 17(1): 19.
32
李榕生,朱秀连,邓春江,等. 人羊膜间充质干细胞对松木屑烟雾诱导大鼠急性肺损伤的保护作用[J]. 华南国防医学杂志2022, 36(10): 765-768+777.
[1] 李璐璐, 马利红, 金佳佳, 谷伟. 干扰素基因刺激因子通过肺巨噬细胞胞葬功能调控急性肺损伤小鼠修复的研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(02): 97-103.
[2] 邓健, 王少华, 陈尊, 邹振庄. Keap1/Nrf2信号通路在脂多糖诱导宫内感染致新生鼠支气管肺发育不良的作用机制[J/OL]. 中华妇幼临床医学杂志(电子版), 2023, 19(06): 665-674.
[3] 徐燕群, 李平, 杨兴, 薛慧. 脂多糖通过促进透明质酸受体CD44向核转移介导牙周膜细胞白细胞介素6释放[J/OL]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 335-344.
[4] 张敏龙, 杨翠平, 王博, 崔云杰, 金发光. MiR-200b-3p 通过抑制HIF-1α 表达减轻海水吸入诱导的肺水肿作用及机制[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 696-700.
[5] 廖江荣, 吴秀琳, 陈光春, 郭亮, 吕慈, 蔡俊, 陈夕. 急性主动脉夹层并发急性肺损伤的研究新进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 488-492.
[6] 顾晓凌, 吴冠楠, 宋勇. 核因子E2相关因子2(Nrf2)与铁死亡在脓毒症相关急性肺损伤中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 324-328.
[7] 李玉娟, 艾芳, 熊欢庆, 陈键, 刘刚, 李志超, 金发光. "丹蛇"组方对小鼠急性肺损伤的治疗作用[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 171-177.
[8] 方晓铵, 熊欢庆, 李玉娟, 刘刚, 金发光. E3泛素连接酶COP-1在脂多糖致小鼠急性肺损伤中的意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(01): 14-18.
[9] 赵世鸿, 陈键, 高嘉营, 金发光. 铁死亡在海水诱导支气管上皮细胞损伤中的作用研究[J/OL]. 中华肺部疾病杂志(电子版), 2023, 16(06): 756-760.
[10] 张敏龙, 金发光. MiR-138-5p通过抑制SIRT1表达增强了海水吸入性肺损伤中炎症反应[J/OL]. 中华肺部疾病杂志(电子版), 2023, 16(06): 751-755.
[11] 尚明煦, 魏丽娟, 是若春. 血清CRP、BNP、PCT与脓毒症并发ALI程度的相关性[J/OL]. 中华肺部疾病杂志(电子版), 2023, 16(06): 766-769.
[12] 熊欢庆, 李玉娟, 陈键, 刘刚, 李志超, 金发光. 丹参酮IIA及苦参碱组方对脂多糖致小鼠急性肺损伤的协同保护作用[J/OL]. 中华肺部疾病杂志(电子版), 2023, 16(04): 455-459.
[13] 林玲, 李京儒, 沈瑞华, 林惠, 乔晞. 基于生物信息学分析小鼠急性肾损伤和急性肺损伤的枢纽基因[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 134-144.
[14] 李浩南, 张煜彭, 付焱, 冯继伟, 刘凯, 张文凯. 缝隙连接蛋白43在肺部疾病中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(01): 60-65.
[15] 张大涯, 陈世锔, 陈润祥, 张晓冬, 李达, 白飞虎. 肠道微生物群对代谢相关脂肪性肝病发展的影响[J/OL]. 中华临床医师杂志(电子版), 2023, 17(07): 828-833.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?