切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2023, Vol. 16 ›› Issue (03) : 318 -323. doi: 10.3877/cma.j.issn.1674-6902.2023.03.004

论著

肺结节临床与CT影像学特征分析及良恶性预测模型构建
李华娟, 唐英俊, 王赛妮, 徐旺, 林玲, 李羲, 黄华萍()   
  1. 570102 海口,海南医学院第一附属医院呼吸内科,海南医学院呼吸病研究所
  • 收稿日期:2023-01-18 出版日期:2023-06-25
  • 通信作者: 黄华萍
  • 基金资助:
    海南省卫生健康行业科研项目(20A200129); 海南省临床医学中心建设项目资助

Analysis of clinical and CT features of the patients with pulmonary nodules and establishment of prediction model to evaluate the probability of malignancy in pulmonary nodules

Huajuan Li, Yingjun Tang, Saini Wang, Wang Xu, Ling Lin, Xi Li, Huaping Huang()   

  1. Department of Respiratory disease, the First affiliated Hospital of Hainan Medical University, Respiratory Disease Institute of Hainan Medical University, Haikou 570102, China
  • Received:2023-01-18 Published:2023-06-25
  • Corresponding author: Huaping Huang
引用本文:

李华娟, 唐英俊, 王赛妮, 徐旺, 林玲, 李羲, 黄华萍. 肺结节临床与CT影像学特征分析及良恶性预测模型构建[J/OL]. 中华肺部疾病杂志(电子版), 2023, 16(03): 318-323.

Huajuan Li, Yingjun Tang, Saini Wang, Wang Xu, Ling Lin, Xi Li, Huaping Huang. Analysis of clinical and CT features of the patients with pulmonary nodules and establishment of prediction model to evaluate the probability of malignancy in pulmonary nodules[J/OL]. Chinese Journal of Lung Diseases(Electronic Edition), 2023, 16(03): 318-323.

目的

分析肺结节临床与CT影像学特征,筛选出模型候选指标,构建肺结节良恶性预测模型,用于临床肺结节的筛查。

方法

选择2014年1月至2021年12月海口市3家三甲医院收治的肺结节患者2 484例,根据术后病理结果分为恶性组710例、良性组1 774例,通过单因素和多因素Logistic回归分析患者的临床和CT影像学特征,筛选出模型候选指标,采用随机分组将2 484例患者按7︰3比例分为训练集1 739例和测试集745例,构建肺结节良恶性预测模型。

结果

年龄、分叶征、毛刺征、胸膜牵拉征、血管集束征、晕征、空气支气管征、支气管截断征、结节周围支扩征、结节周围炎症、卫星灶、钙化、厚壁空洞、薄壁空洞两组差异有统计学意义(P<0.001)。构建回归方程P=exp(X)/[1+exp(X)],X=-2.90+(0.06×年龄)+(1.95×分叶征)+(1.08×毛刺征)+(1.48×胸膜牵拉征)+(2.40×血管集束征)+(1.19×厚壁空洞)+(-1.64×薄壁空洞)+(1.14×空气支气管征)+(1.35×支气管截断征)+(-3.18×结节周围炎症)+(-0.99×卫星灶)+(1.78×晕征)+(-2.99×结节周围支扩征)+(-2.60×结节内钙化)。该模型绘制ROC曲线,AUC为0.968,95%CI:0.955~0.981,当截点值T=1.528时,敏感度为96%,特异性为81%,阳性预测值为93%,阴性预测值为88%,准确率为92%。

结论

年龄、分叶征、毛刺征、胸膜牵拉征、血管集束征、空气支气管征、支气管截断征、厚壁空洞和晕征是肺结节恶性的危险因素,结节周围支扩征、结节周围炎症、卫星灶、薄壁空洞、钙化是肺结节恶性的保护因素,构建的预测模型具有较高的灵敏度和特异度,可用于临床肺结节良恶性的筛查。

Objective

The clinical and CT imaging characteristics of pulmonary nodules were analyzed, the model candidates were selected, and the prediction model of benign and malignant pulmonary nodules was constructed for the clinical screening of benign and malignant pulmonary nodules.

Methods

Retrospective analysis of 2, 484 patients with pulmonary nodules admitted to the First Affiliated Hospital of Hainan Medical College, Hainan Provincial People′s Hospital and Haikou Municipal People′s Hospital from January 2014 to December 2021, According to the postoperative pathological results, it was divided into malignant group 710 case and benign group 1 774 case, The clinical and CT imaging characteristics of the patients were analyzed by univariate and multivariate Logistic regression, Screout model candidate indicators, By randomization, 2, 484 patients were divided into training set 1 739 case in a 7︰3 ratio and test set 745 case, Construct the benign and malignant prediction model of pulmonary nodules.

Results

Age, leaf segmentation, burr, pleural pull, vascular collection, halo, air, bronchial sign, bronchial resection, perinodulular branch expansion, perinodule inflammation, satellite focus, calcification, thick-walled cavity, and thin-walled cavity (P<0.001). Build the regression equation P=exp(X)/[1+ exp(X)], X=-2.90+ (0.06 age)+ (1.95 leaf sign)+ (1.08 burr)+ (1.48 pleural pull)+ (2.40 vascular bundle sign)+ (1.19 thick wall hole)+ (-1.64 cavity)+ (1.14 air bronchial sign)+ (1.35 bronchial cutoff)+ (-3.18 surrounding nodule inflammation)+ (-0.99 satellite focus)+ (1.78 halo)+ (-2.99 peripheral branch expansion)+ (-2.60 internal nodular calcification). The model plots the ROC curve, AUC of 0.968, 95%CI of 0.955 to 0.981, when the cut-off value T=1.528, the sensitivity was 96%, specificity of 81%, positive predictive value of 93%, negative predictive value of 88% and accuracy of 92%.

Conclusion

Age, leaf sign, burr, pleural pull, vascular collection, air bronchial sign, bronchial cut, thick wall cavity and halo signs are malignant risk factors of lung nodules, nodules, inflammation, satellite focus, thin wall cavity, calcification is lung nodules malignant protective factors, the prediction model has high sensitivity and specificity, can be used for clinical screening of benign and malignant pulmonary nodules.

表1 良恶性组临床及CT影像学特征单因素回归分析(n=2 484)
表2 多因素Logistic回归分析
图1 列线图
图2 注:A:训练集ROC曲线;B:测试集ROC曲线;C:训练集校准曲线;D:测试集校准曲线
1
杨 丽,钱桂生. 肺结节临床精准诊断的新理念[J/CD]. 中华肺部疾病杂志(电子版), 2022, 15(1): 1-5.
2
黎惠如,方伟军,刘曾维,等. CT在单发结节或肿块型肺结核和肺癌鉴别中的作用研究[J/CD]. 新发传染病电子杂志2021, 6(4): 323-326.
3
Bach PB, Mirkin JN, Oliver TK, et al. Benefits and harms of CT screening for lung cancer: a systematic review[J]. JAMA, 2012, 307(22): 2418-2429.
4
Mcwilliams A, Tammemagi MC, Mayo JR, et al. Probability of cancer in pulmonary nodules detected on first screening CT[J]. N Eng J Med, 2013, 369(21): 2060.
5
Dong J, Sun NL. Development and validation of ciinical diagnostic models for the probability of malignancy in solitary pulmonary nodules[J]. Thoracic Cancer, 2014, 5(2): 162.
6
刘宗超,李哲轩,张 阳,等. 2020全球癌症统计报告解读[J]. 肿瘤综合治疗电子杂志2021, 7(2): 1-14.
7
刘 姝,环 静,佘远霞. 肺磨玻璃结节病理学分级与高分辨率CT征象的相关性分析[J]. 实用临床医药杂志2019, 23(7): 56-59.
8
National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology-lung cancer screening version 1.2021. Plymouth Meeting (PA): the National Comprehensive Cancer Network;?[cited2021 May 5].
9
Chen W, Zheng RB, Zhang S, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132.
10
Chan EY, Gaur P, Ge YM, et al. Management of the Solitary Pulmonary Nodule[J]. Arch Pathol Lab Med, 2017, 141(7): 927-931.
11
田素升,张 炜,范海涛,等. 多样化CT征象鉴别周围性肺癌与肺结核[J]. 分子影像学杂志2018, 41(1): 11-15.
12
望 云,刘士远,范 丽,等. 含薄壁囊腔周围型肺癌的CT特征及病理基础分析[J]. 中华放射学杂志2017, 51(2): 96-101.
13
孙玉林. 浅述周围型肺癌、结核球CT研究现状[J]. 中国医疗器械信息2018, 24(5): 57-58.
14
王 莉,姜敏杰,杨玉龙,等. 孤立性肺空洞疾病影像学特征及临床诊断价值分析[J]. 中国实验诊断学2020, 24(11): 1784-1787.
15
Lee YR, Choi YW, Lee KJ, et al. CT halo sign: the spectrum of pulmonary diseases[J]. Br J Radiol, 2005, (78): 862-865.
16
王 鹏. 肺癌、肺结核球和炎性假瘤螺旋CT的影像特征[J]. 临床医药文献电子杂志2017, 4(59): 47-49.
17
仲崇浩,史宏灿,束余声,等. 孤立性肺结节恶性判断数学预测模型的建立及临床对比验证分析[J]. 实用临床医药杂志2017, 21(9): 82-85,93.
18
肖湘生,吴华伟,李惠民,等. 周围型肺癌胸膜凹陷的CT和MRI表现与病理对照[J]. 临床放射性杂志2002, 21(5): 344-347.
19
周 菲,孙彦华. 肺结核球误诊为周围性肺癌23例CT影像分析[J]. 中国误诊学杂志2010, 10(33): 8207.
20
万传毅,曹 林,阮丽婷. 球形肺炎、肺结核球与周围型肺癌的CT诊断及鉴别[J]. 河南医学研究2021, 30(27): 5137-5140.
21
马 东,姜加学,杨小庆,等. 肺部磨玻璃结节的CT影像特征评估肺腺癌浸润性的价值[J]. 临床肺科杂志2019, 24(8): 1470-1473.
22
王丽丽. 分析肺磨玻璃结节的胸部CT影像特征及其对结节良恶性的诊断意义[J]. 影像研究与医学应用2021, 5(16): 165-166.
23
Ebert W, Muley T. CYFRA 2 1-1 in the follow-up of inoperable non-small cell lung cancer patients treated with chemotherapy[J]. Anticancer Res, 1999, 19: 2669-2672.
24
Zhang Y, Qiang JW, Shen Y, et al. Using air bronchograms on multi-detector CT to predict the invasiveness of small lung adenocarcinoma[J]. Eur J R adiol, 2016, 85(3): 571-577.
25
黄定品,傅钢泽,项益岚,等. 纯磨玻璃肺小腺癌内异常空气支气管征与病理亚型的相关性[J]. 医学影像学杂志2019, 29(12): 2047-2050.
26
李孝东,廖 潜,游玉峰. 多层螺旋CT在肺结核空洞与肺癌空洞鉴别诊断中的临床应用[J]. 中国肿瘤临床与康复2021, 28(7): 850-853.
27
骆科进,关 晶,先正元. 结节周围支扩征在CT诊断肺结核球中的价值[J]. 中国医学影像技术2001, 17(4): 337-338.
28
王爱英,李兰涛,张伟红. 肺结核球的HRCT诊断[J]. 青岛医药卫生2012, 44 (6): 412-414.
29
Helen T, Winer-Mnram MD. The solitary pulmonary nodule[J]. Radiology, 2007, 239(1): 34-49.
30
唐春耕,尹 喜,王成伟. 能谱CT在不典型结核球与肺癌中的诊断价值[J]. 实用放射学杂志2017, 33(4): 522-525.
31
张益军. 肺结核球的CT影像学特点分析[J]. 中国冶金工业医学杂志2015, 32(4): 446-447, 461.
32
魏连贵,关春爽,陈步东,等. 孤立性非干酪性肺结核球的CT表现与鉴别诊断[J/CD]. 新发传染病电子杂志2021, 6(1): 35-39.
[1] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[2] 丁科, 张亚琼, 刘杰, 邓莉平, 张永喜, 熊勇. 获得性免疫缺陷综合征相关淋巴瘤患者的临床特征及生存状况的变化趋势[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 278-284.
[3] 奚玲, 仝瀚文, 缪骥, 毛永欢, 沈晓菲, 杜峻峰, 刘晔. 基于肌少症构建的造口旁疝危险因素预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 48-51.
[4] 张超, 张珍, 马梁, 穆欢欢, 刘彩玲. 腹腔镜胰十二指肠切除术术后C级胰瘘患者临床特征及影响因素研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 675-678.
[5] 屈勤芳, 束方莲. 盆腔器官脱垂患者盆底重建手术后压力性尿失禁发生的影响因素及列线图预测模型构建[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 606-612.
[6] 王华, 曹素娥, 吴建杰, 狄金明. 膀胱炎性肌纤维母细胞瘤四例诊治报告并文献复习[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 547-552.
[7] 公宇, 廖媛, 尚梅. 肝细胞癌TACE术后复发影响因素及预测模型建立[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 818-824.
[8] 王贝贝, 崔振义, 王静, 王晗妍, 吕红芝, 李秀婷. 老年股骨粗隆间骨折患者术后贫血预测模型的构建与验证[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 355-362.
[9] 单良, 刘怡, 于涛, 徐丽. 老年股骨颈骨折术后患者心理弹性现状及影响因素分析[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(05): 294-300.
[10] 刘郁, 段绍斌, 丁志翔, 史志涛. miR-34a-5p 在结肠癌患者的表达及其与临床特征及预后的相关性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 485-490.
[11] 孙晗, 于冰, 武侠, 周熙朗. 基于循环肿瘤DNA 甲基化的结直肠癌筛查预测模型的构建与验证[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 500-506.
[12] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[13] 蔡晓雯, 李慧景, 丘婕, 杨翼帆, 吴素贤, 林玉彤, 何秋娜. 肝癌患者肝动脉化疗栓塞术后疼痛风险预测模型的构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 722-728.
[14] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
[15] 董晟, 郎胜坤, 葛新, 孙少君, 薛明宇. 反向休克指数乘以格拉斯哥昏迷评分对老年严重创伤患者发生急性创伤性凝血功能障碍的预测价值[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 541-547.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?