切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2023, Vol. 16 ›› Issue (05) : 742 -747. doi: 10.3877/cma.j.issn.1674-6902.2023.05.039

综述

高原肺动脉高压机制与药物治疗进展
苏小慧, 宋新雅, 鱼帆, 丁小涵(), 卞士柱   
  1. 730000 兰州,甘肃中医药大学第一临床医学院
    730000 兰州,甘肃中医药大学第一临床医学院;730000 兰州,联勤保障部队第九四〇医院干部病房
    400037 重庆,陆军(第三)军医大学第二附属医院心血管内科
  • 收稿日期:2023-04-07 出版日期:2023-10-25
  • 通信作者: 丁小涵
  • 基金资助:
    军队保健课题(21BJZ42;2021yxky030)

Mechanism of high altitude pulmonary hypertension and progress of drug treatment

Xiaohui Su, Xinya Song, Fan Yu   

  • Received:2023-04-07 Published:2023-10-25
引用本文:

苏小慧, 宋新雅, 鱼帆, 丁小涵, 卞士柱. 高原肺动脉高压机制与药物治疗进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 742-747.

Xiaohui Su, Xinya Song, Fan Yu. Mechanism of high altitude pulmonary hypertension and progress of drug treatment[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2023, 16(05): 742-747.

高原肺动脉高压(high-altitude pulmonary hypertension, HAPH)指生活在2500 m以上人群,由于长期高原低压低氧引起肺血管持续收缩和肺小动脉中层平滑肌细胞异常增生,导致的一种慢性高原病,以肺动脉压力升高和低氧血症为主要特征[1]。HAPH临床症状缺乏特异性,表现为进行性呼吸困难、乏力、运动耐量降低及胸痛等;部分可出现不常见症状,如疲劳、头痛和认知障碍等[2]。导致临床诊断困难、漏诊和误诊率高,深入研究HAPH临床表现、提高诊断效率等对HAPH临床救治具有重要意义。

1
李雪莲,王雪梅. 高原性肺动脉高压监测手段研究进展 [J]. 分子影像学杂志2018, 41(4): 538-541.
2
叶祥琳,古丽胡玛,岳 娇,等. 高原肺动脉高压的发病机制与药物治疗研究进展 [J]. 暨南大学学报(自然科学与医学版), 2022, 43(5): 467-479.
3
张 欢,华 毛,冯喜英,等. 脑钠肽、低氧诱导因子-1α、心肌型脂肪酸结合蛋白在高原肺动脉高压中的研究进展[J/CD]. 中华肺部疾病杂志(电子版), 2017, 10(5): 604-607.
4
Fisher Micah R, Forfia Paul R, Chamera Elzbieta, et al. Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension [J]. Am J Respir Crit Care Med, 2009, 179(7): 615-621.
5
León-Velarde Fabiola, Maggiorini Marco, Reeves John T, et al. Consensus statement on chronic and subacute high altitude diseases[J]. High Alt Med Biol, 2005, 6(2): 147-157.
6
梁 贞. 西藏不同海拔各慢性高原病的患病率调查与研究[D]. 西藏大学,2021: 34-65.
7
Brito Julio, Siques Patricia, Pena Eduardo. Long-term chronic intermittent hypoxia: a particular form of chronic high-altitude pulmonary hypertension [J]. Pulm Circ, 2020, 10(1 Suppl): 5-12.
8
Erzurum SC, Ghosh S, Janocha AJ, et al. Higher blood flow and circulating NO products offset high-altitude hypoxia among Tibetans [J]. Proc Natl Acad Sci U S A, 2007, 104(45): 17593-17598.
9
Pena Eduardo, Alam Samia El, Siques Patricia, et al. Oxidative stress and diseases associated with high-altitude exposure [J]. Antioxidants (Basel), 2022, 11(2): 267.
10
Negi Prakash Chand, Marwaha Rajeev, Asotra Sanjeev, et al. Prevalence of high altitude pulmonary hypertension among the natives of Spiti Valley-a high altitude region in Himachal Pradesh, India[J]. High Alt Med Biol, 2014, 15(4): 504-510.
11
Nicolas A, Ulloa, Jessica Cook. Altitude-induced pulmonary hypertension[M]. StatPearls. Treasure Island (FL); StatPearls Publishing, 2023: 117-245.
12
de Jesus Perez Vinicio A. High-altitude pulmonary vascular diseases [J]. Adv Pulm Hypertens, 2017, 15(3): 149-157.
13
Wang Liming, Yin Jun, Nickles Hannah T, et al. Hypoxic pulmonary vasoconstriction requires connexin 40-mediated endothelial signal conduction [J]. J Clin Invest, 2012, 122(11): 4218-4230.
14
Sydykov Akylbek, Mamazhakypov Argen, Maripov Abdirashit, et al. Pulmonary hypertension in acute and chronic high altitude maladaptation disorders [J]. Int J Environ Res Public Health, 2021, 18(4):1692.
15
Swenson ER. Hypoxic pulmonary vasoconstriction[J]. High Alt Med Biol, 2013, 14(2): 101-110.
16
Pugliese Steven C, Poth Jens M, Fini Mehdi A, et al. The role of inflammation in hypoxic pulmonary hypertension: from cellular mechanisms to clinical phenotypes[J]. Am J Physiol Lung Cell Mol Physiol, 2015, 308(3): L229-L252.
17
Tuder RM. Pulmonary vascular remodeling in pulmonary hypertension[J]. Cell Tissue Res, 2017, 367(3): 643-649.
18
Ryanto Gusty Rizky Teguh, Suraya Ratoe, Nagano Tatsuya. Mitochondrial dysfunction in pulmonary hypertension[J]. Antioxidants (Basel), 2023, 12(2): 372.
19
Marshall JD, Bazan I, Zhang Y, et al. Mitochondrial dysfunction and pulmonary hypertension: cause, effect, or both[J]. Am J Physiol Lung Cell Mol Physiol, 2018, 314(5): L782-L796.
20
Pullamsetti Soni Savai, Mamazhakypov Argen, Weissmann Norbert, et al. Hypoxia-inducible factor signaling in pulmonary hypertension [J]. J Clin Invest, 2020, 130(11): 5638-5651.
21
Huang X, Akgün EE, Mehmood K, et al. Mechanism of hypoxia-mediated smooth muscle cell proliferation leading to vascular remodeling[J]. Biomed Res Int, 2022, 2022: 3959845.
22
Ye Y, Xu Q, Wuren T. Inflammation and immunity in the pathogenesis of hypoxic pulmonary hypertension[J]. Front Immunol, 2023, 14: 1162556.
23
Palazon A, Goldrath AW, Nizet V, et al. HIF transcription factors, inflammation, and immunity [J]. Immunity, 2014, 41(4): 518-528.
24
Prabhakar Nanduri R, Semenza Gregg L. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2 [J]. Physiol Rev, 2012, 92(3): 967-1003.
25
Voelkel NF, Mizuno S, Bogaard HJ. The role of hypoxia in pulmonary vascular diseases: a perspective[J]. Am J Physiol Lung Cell Mol Physiol, 2013, 304(7): L457-L465.
26
Pu X, Lin X, Duan X, et al. Oxidative and endoplasmic reticulum stress responses to chronic high-altitude exposure during the development of high-altitude pulmonary hypertension[J]. High Alt Med Biol, 2020, 21(4): 378-387.
27
Dosek A, Ohno H, Acs Z, et al. High altitude and oxidative stress[J]. Respir Physiol Neurobiol, 2007, 158(2-3): 128-131.
28
Chai T, Qiu C, Xian Z, et al. A narrative review of research advances in hypoxic pulmonary hypertension[J]. Ann Transl Med, 2022, 10(4): 230.
29
Prieto-Lloret Jesus, Snetkov Vladimir A, Shaifta Yasin, et al. Role of reactive oxygen species and sulfide-quinone oxoreductase in hydrogen sulfide-induced contraction of rat pulmonary arteries[J]. Am J Physiol Lung Cell Mol Physiol, 2018, 314(4): L670-L685.
30
Sies H. Strategies of antioxidant defense[J]. Eur J Biochem, 1993, 215(2): 213-219.
31
Oyewole Anne O, Birch-Machin Mark A. Mitochondria-targeted antioxidants[J]. Faseb J, 2015, 29(12): 4766-4771.
32
He Y, Fang X, Shi J, et al. Apigenin attenuates pulmonary hypertension by inducing mitochondria-dependent apoptosis of PASMCs via inhibiting the hypoxia inducible factor 1α-KV1.5 channel pathway[J]. Chem Biol Interact, 2020, 317: 108942.
33
Guo L, Qiu Z, Wei L, et al. The microRNA-328 regulates hypoxic pulmonary hypertension by targeting at insulin growth factor 1 receptor and L-type calcium channel-α1C [J]. Hypertension, 2012, 59(5): 1006-1013.
34
Brutsaert T. Why are high altitude natives so strong at high altitude? Nature vs. Nurture: Genetic Factors vs. Growth and Development [J]. Adv Exp Med Biol, 2016, 903: 101-112.
35
Chappell MA, Snyder LR Biochemical and physiological correlates of deer mouse alpha-chain hemoglobin polymorphisms [J]. Proc Natl Acad Sci U S A, 1984, 81(17): 5484-5488.
36
Tate Kevin B, Wearing Oliver H, Ivy Catherine M, et al. Coordinated changes across the O(2) transport pathway underlie adaptive increases in thermogenic capacity in high-altitude deer mice[J]. Proc Biol Sci, 2020, 287(1927): 20192750.
37
Evans Jonathan DW, Girerd Barbara, Montani David, et al. BMPR2 mutations and survival in pulmonary arterial hypertension: an individual participant data meta-analysis [J]. Lancet Respir Med, 2016, 4(2): 129-137.
38
Machado Rajiv D, Southgate Laura, Eichstaedt Christina A, et al. Pulmonary arterial hypertension: A current perspective on established and emerging molecular genetic defects [J]. Hum Mutat, 2015, 36(12): 1113-1127.
39
Liu D, Liu Q-Q, Eyries M, et al. Molecular genetics and clinical features of Chinese idiopathic and heritable pulmonary arterial hypertension patients [J]. Eur Respir J, 2012, 39(3): 597-603.
40
Thomson JR, Machado RD, Pauciulo MW, et al. Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-Ⅱ,a receptor member of the TGF-beta family [J]. J Med Genet, 2000, 37(10): 741-745.
41
Petousi Nayia, Croft Quentin P P, Cavalleri Gianpiero L, et al. Tibetans living at sea level have a hyporesponsive hypoxia-inducible factor system and blunted physiological responses to hypoxia[J]. J Appl Physiol (1985), 2014, 116(7): 893-904.
42
Mishra Aastha, Mohammad Ghulam, Thinlas Tashi, et al. EGLN1 variants influence expression and SaO2 levels to associate with high-altitude pulmonary oedema and adaptation [J]. Clin Sci (Lond), 2013, 124(7): 479-489.
43
Beall Cynthia M, Cavalleri Gianpiero L, Deng Libin, et al. Natural selection on EPAS1 (HIF2alpha) associated with low hemoglobin concentration in Tibetan highlanders [J]. Proc Natl Acad Sci U S A, 2010, 107(25): 11459-11464.
44
Aldashev Almaz A, Sarybaev Akpay S, Sydykov Akyl S, et al. Characterization of high-altitude pulmonary hypertension in the Kyrgyz: association with angiotensin-converting enzyme genotype[J]. Am J Respir Crit Care Med, 2002, 166(10): 1396-1402.
45
Morrell NW, Sarybaev AS, Alikhan A, et al. ACE genotype and risk of high altitude pulmonary hypertension in Kyrghyz highlanders [J]. Lancet, 1999, 353(9155): 814.
46
Mirrakhimov Aibek E, Strohl Kingman P. High-altitude pulmonary hypertension: an update on disease pathogenesis and management [J]. Open Cardiovasc Med J, 2016, 10: 19-27.
47
León-Velarde Fabiola, Mejía Olga. Gene expression in chronic high altitude diseases [J]. High Alt Med Biol, 2008, 9(2): 130-139.
48
Lyu Qiang, Bai Yungang, Cheng Jiuhua, et al. Intermittent short-duration reoxygenation protects against simulated high altitude-induced pulmonary hypertension in rats[J]. Faseb J, 2021, 35(2): e21212.
49
蔡婷婷,达娃次仁. 慢性高原缺氧性肺动脉高压治疗进展[J]. 高原医学杂志2018, 28(4): 61-64.
50
Thenappan Thenappan, Ormiston Mark L, Ryan John J, et al. Pulmonary arterial hypertension: pathogenesis and clinical management[J]. BMJ, 2018, 360: j5492.
51
Pham I, Wuerzner G, Richalet J-P, et al. Endothelin receptors blockade blunts hypoxia-induced increase in PAP in humans[J]. Eur J Clin Invest, 2010, 40(3): 195-202.
52
Kojonazarov Baktybek, Isakova Jainagul, Imanov Bakytbek, et al. Bosentan reduces pulmonary artery pressure in high altitude residents[J]. High Alt Med Biol, 2012, 13(3): 217-223.
53
王佳兴,张玉顺,刘海莲,等. 波生坦对高原性肺水肿的治疗作用[J]. 现代生物医学进展2009, 9(4): 693-695.
54
方灵芝,邱学佳,关丽叶. 肺动脉高压治疗药物5型磷酸二酯酶抑制剂的Mini卫生技术评估[J]. 临床药物治疗杂志2022, 20(5): 57-62.
55
赵保国,张秉丽. 高原肺动脉高压患者早期药物治疗临床研究[J]. 青海医药杂志2020, 50(2): 6-8.
56
Ghofrani Hossein A, Reichenberger Frank, Kohstall Markus G, et al. Sildenafil increased exercise capacity during hypoxia at low altitudes and at Mount Everest base camp: a randomized, double-blind, placebo-controlled crossover trial [J]. Ann Intern Med, 2004, 141(3): 169-177.
57
XU Y, LIU Y, LIU J, et al. Meta-analysis of clinical efficacy of sildenafil, a phosphodiesterase type-5 inhibitor on high altitude hypoxia and its complications[J]. High Alt Med Biol, 2014, 15(1): 46-51.
58
Richalet JP, Gratadour P, Robach P, et al. Sildenafil inhibits altitude-induced hypoxemia and pulmonary hypertension[J]. Am J Respir Crit Care Med, 2005, 171(3): 275-281.
59
Clapp JR, Watson JF, Berliner RW. Effect of carbonic anhydrase inhibition on proximal tublar bicarbonate reabsorption[J]. Am J Physiol, 1963, 205: 693-696.
60
Swenson ER. Carbonic anhydrase inhibitors and ventilation: a complex interplay of stimulation and suppression[J]. Eur Respir J, 1998, 12(6): 1242-1247.
61
Bärtsch Peter, Swenson Erik R. Acute high-altitude illnesses[J]. N Engl J Med, 2013, 369(17): 1666-1667.
62
Richalet Jean-Paul, Rivera Maria, Bouchet Patrick, et al. Acetazolamide:a treatment for chronic mountain sickness[J]. Am J Respir Crit Care Med, 2005, 172(11): 1427-1433.
63
Spyropoulos Fotios, Michael Zoe, Finander Benjamin, et al. Acetazolamide Improves Right Ventricular Function and Metabolic Gene Dysregulation in Experimental Pulmonary Arterial Hypertension[J]. Front Cardiovasc Med, 2021, 8: 662870.
64
Lichtblau Mona, Berlier Charlotte, Saxer Stéphanie, et al. Acute Hemodynamic Effect of Acetazolamide in Patients With Pulmonary Hypertension Whilst Breathing Normoxic and Hypoxic Gas: A Randomized Cross-Over Trial[J]. Front Med (Lausanne), 2021, 8: 681473.
65
Pietta PG. Flavonoids as antioxidants [J]. J Nat Prod, 2000, 63(7): 1035-1042.
66
Veith C, Drent M, Bast A, et al. The disturbed redox-balance in pulmonary fibrosis is modulated by the plant flavonoid quercetin [J]. Toxicol Appl Pharmacol, 2017, 336: 40-48.
67
Xiao X, Shi D, Liu L, et al. Quercetin suppresses cyclooxygenase-2 expression and angiogenesis through inactivation of P300 signaling [J]. PLoS One, 2011, 6(8): e22934.
68
Yao Y, Feng Y, Lin W. Systematic review and meta-analysis of randomized controlled trials comparing compound danshen dripping pills and isosorbide dinitrate in treating angina pectoris [J]. Int J Cardiol, 2015, 182: 46-47.
69
Li Z, Guo J, Liu C, et al. Compound danshen dripping pill promotes adaptation to acute high-altitude exposure [J]. High Alt Med Biol, 2020, 21(3): 258-264.
70
Hu Y, Sun J, Wang T, et al. Compound Danshen Dripping Pill inhibits high altitude-induced hypoxic damage by suppressing oxidative stress and inflammatory responses [J]. Pharm Biol, 2021, 59(1): 1585-1593.
[1] 段燕, 郭欣, 吕慧芳, 王国利, 黄明光, 董英俊. 乳腺癌患者辅助化疗后感染肺孢子菌一例[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 318-321.
[2] 中华医学会骨科学分会关节外科学组, 广东省医学会骨质疏松和骨矿盐疾病分会, 广东省佛山市顺德区第三人民医院. 中国髋部脆性骨折术后抗骨质疏松药物临床干预指南(2023年版)[J]. 中华关节外科杂志(电子版), 2023, 17(06): 751-764.
[3] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[4] 江泽莹, 王安婷, 王姣丽, 陈慈, 周秋玲, 黄燕娟, 周芳, 薛琰, 周剑烽, 谭文勇, 杜美芳. 多种植物油组分预防肿瘤放化疗相关毒性反应的效果分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 523-527.
[5] 陆美琪, 赵洁, 单菲, 王兴蕾, 姜笃银. 药物相关坏疽性脓皮病的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 447-450.
[6] 张潇尹, 于洋. 牙龈卟啉单胞菌介导慢性肾病发生发展的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 328-334.
[7] 李永浩, 高雪菲, 郭田田, 张进, 张彩针, 刘静. 肥胖合并甲状腺癌相关机制的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(04): 311-315.
[8] 叶晓琳, 刘云飞, 庞明泉, 王海久, 任利, 侯立朝, 于文昊, 王志鑫, 樊海宁. 肝再生细胞来源及调控机制的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 96-99.
[9] 熊风, 林辉煌, 陈晓波. 铥激光在泌尿外科中的临床应用及研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 533-536.
[10] 任加发, 邬步云, 邢昌赢, 毛慧娟. 2022年急性肾损伤领域基础与临床研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 276-281.
[11] 金刚, 李英真, 施维, 李博. 帕金森病在病理生理学中的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 315-319.
[12] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[13] 戴俊, 李硕, 曹影, 汪守峰, 宋红毛, 蔡菁菁, 邵敏, 陈莉, 程雷, 怀德. 鼻内镜下改良高选择性翼管神经低温等离子消融术对中重度变应性鼻炎的效果研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 689-693.
[14] 李宁, 刘言, 林慧庆. 肺移植供肺缺血再灌注损伤的机制及预防[J]. 中华胸部外科电子杂志, 2023, 10(04): 247-256.
[15] 王楠, 邱宝山, 莫大鹏, 王伊龙. 免疫炎症反应在脑静脉血栓形成中的作用机制研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(06): 609-612.
阅读次数
全文


摘要