切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2024, Vol. 17 ›› Issue (01) : 14 -18. doi: 10.3877/cma.j.issn.1674-6902.2024.01.003

论著

E3泛素连接酶COP-1在脂多糖致小鼠急性肺损伤中的意义
方晓铵1, 熊欢庆1, 李玉娟1, 刘刚1, 金发光1,()   
  1. 1. 710038 西安,空军军医大学第二附属医院呼吸与危重症医学科
  • 收稿日期:2023-10-13 出版日期:2024-02-25
  • 通信作者: 金发光
  • 基金资助:
    国家自然科学基金面上项目(81970076)

Significance of E3 ubiquitin ligase COP-1 in lipopolysaccharide-induced acute lung injury in mice

Xiaoan Fang1, Huanqing Xiong1, Yujuan Li1, Gang Liu1, Faguang Jin1,()   

  1. 1. Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Air Force Medical University, Xi′an 710038, China
  • Received:2023-10-13 Published:2024-02-25
  • Corresponding author: Faguang Jin
引用本文:

方晓铵, 熊欢庆, 李玉娟, 刘刚, 金发光. E3泛素连接酶COP-1在脂多糖致小鼠急性肺损伤中的意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 14-18.

Xiaoan Fang, Huanqing Xiong, Yujuan Li, Gang Liu, Faguang Jin. Significance of E3 ubiquitin ligase COP-1 in lipopolysaccharide-induced acute lung injury in mice[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2024, 17(01): 14-18.

目的

分析E3泛素连接酶组成型光形态发生蛋白1(constitutive photomorphogenetic protein 1, COP-1)全身敲除后的杂合子小鼠在脂多糖(lipopolysaccharide, LPS)致急性肺损伤(acute lung injury, ALI)中的表现及作用机制。

方法

选择48只雄性C57小鼠,随机分为4组:已敲除COP-1:COP-1+/--PBS(KOPBS组)、COP-1+/--LPS(KOLPS组);未敲除COP-1:WT-PBS(WTPBS组)、WT-LPS(WTLPS组),每组12只。KOLPS组、WTLPS组给予LPS 10 mg/kg气管内滴注进行ALI造模,KOPBS组、WTPBS组用同等体积的PBS处理相同时间。造模24 h后,取肺组织,HE染色观察肺组织形态学改变,测定湿/干重比值(W/D),ELISA法测定肺泡灌洗液(bronchoalveolar lavage fluid, BALF)和肺组织中肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、白介素-1β(interleukin-1β,IL-1β)、白介素-6(interleukin-6, IL-6)、肺组织中髓过氧化物酶(myeloperoxidase, MPO)活力。

结果

形态学观察表明KOLPS组肺组织和WTLPS组、KOPBS组肺组织和WTPBS组比较炎性细胞浸润、充血、水肿显著。KOPBS组和WTPBS组,KOLPS组和WTLPS组比较,炎症因子水平以及肺组织中MPO活力和肺W/D比值升高(P<0.05)。

结论

敲除小鼠E3泛素连接酶COP-1加重LPS致ALI,探讨COP-1在肺炎中治疗作用,具有临床意义。

Objective

To analyze the role of E3 ubiquitin ligase constitutive photomorphogenetic protein 1(COP-1) in lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and preliminarily explore its mechanism of action.

Methods

All of 48 male C57 mice were randomly divided into 4 groups: COP-1 knockout: COP-1+ /--PBS (KOPBS group), COP-1+ /--LPS (KOLPL group); Non-knockout COP-1: WT-PBS (WTPBS group), WT-LPS (WTLPS group), 12 in each group. Among them, the LPS group was given LPS 10 mg/kg intratracheally to model acute lung injury, while the PBS group was treated with an equal volume of PBS for the same time. 24 hours after modeling, lung tissue was taken, HE stained to observe morphological changes in lung tissue, wet/dry weight ratio (W/D) was measured, ELISA was used to measure tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), myeloperoxidase (MPO) activity in lung tissue and bronchoalveolar lavage fluid (BALF).

Results

Morphological observations showed that infiltration of inflammatory cells, congestion, and edema in the KOLPS group lung tissue were more significant compared to the WT-LPS group, KOPBS group lung tissue, and the WTPBS group. Compared to the WTPBS group and KOPBS group, WTLPS group and KOLPS group, the level of inflammatory factors, MPO activity in lung tissue, and lung W/D ratio were significantly increased (P<0.05).

Conclusion

The knockout of E3 ubiquitin ligase COP-1 can aggravate LPS-induced acute lung injury in mice, the therapeutic effect of COP-1 in pneumonia needs further exploration.

图1 每组小鼠肺组织W/D值比较。与WTPBS组比较:*P<0.05;与WTLPS组比较:#P<0.05
图2 每组小鼠肺组织病理形态学结果(HE染色,×5)
表1 每组小鼠BALF和肺组织中炎症因子(±sn=6)
图3 每组小鼠肺组织中MPO活力情况。与WTPBS组比较:*P<0.05;与WTLPS组比较:#P<0.05;MPO:髓过氧化物酶
图4 每组小鼠肺组织中凋亡蛋白Bax、Bcl-2、Cle-caspase3表达情况
1
熊欢庆,李玉娟,陈 键,等. 丹参酮ⅡA及苦参碱组方对脂多糖致小鼠急性肺损伤的协同保护作用[J/CD]. 中华肺部疾病杂志(电子版), 2023, 16(4): 455-459.
2
Deng XW, Caspar T, Quail PH. cop1: a regulatory locus involved in light-controlled development and gene expression in Arabidopsis[J]. Genes Dev, 1991, 5(7): 1172-1182.
3
Ndoja A, Reja R, Lee SH, et al. Ubiquitin ligase COP1 suppresses neuroinflammation by degrading c/EBPbeta in microglia[J]. Cell, 2020, 182(5): 1156-1169.
4
Ka WH, Cho SK, Chun BN, et al. The ubiquitin ligase COP1 regulates cell cycle and apoptosis by affecting p53 function in human breast cancer cell lines[J]. Breast Cancer, 2018, 25(5): 529-538.
5
Fan E, Brodie D, Slutsky AS. Acute respiratory distress syndrome:advances in diagnosis and treatment[J]. JAMA, 2018, 319(7): 698-710.
6
Li Z, Pan H, Yang J, et al. Xuanfei Baidu formula alleviates impaired mitochondrial dynamics and activated NLRP3 inflammasome by repressing NF-kappaB and MAPK pathways in LPS-induced ALI and inflammation models[J]. Phytomedicine, 2023, 108: 154545.
7
Gong L, Shen Y, Wang S, et al. Nuclear SPHK2/S1P induces oxidative stress and NLRP3 inflammasome activation via promoting p53 acetylation in lipopolysaccharide-induced acute lung injury[J]. Cell Death Discov, 2023, 9(1): 12.
8
Zheng F, Wu X, Zhang J, et al. Sevoflurane reduces lipopolysaccharide-induced apoptosis and pulmonary fibrosis in the RAW264.7 cells and mice models to ameliorate acute lung injury by eliminating oxidative damages[J]. Redox Rep, 2022, 27(1): 139-149.
9
Liu D, Wang Q, Yuan W, et al. Irigenin attenuates lipopolysaccharide-induced acute lung injury by inactivating the mitogen-activated protein kinase (MAPK) signaling pathway[J]. Hum Exp Toxicol, 2023, 42: 764793958.
10
Strydom N, Rankin SM. Regulation of circulating neutrophil numbers under homeostasis and in disease[J]. J Innate Immun, 2013, 5(4): 304-314.
11
Van Damme J, De Ley M, Opdenakker G, et al. Homogeneous interferon-inducing 22K factor is related to endogenous pyrogen and interleukin-1[J]. Nature, 1985, 314(6008): 266-268.
12
Li H, Li J, Xiao T, et al. Nintedanib alleviates experimental colitis by inhibiting CEBPB/PCK1 and CEBPB/EFNA1 pathways[J]. Front Pharmacol, 2022, 13: 904420.
13
Tang SC, Lion Q, Peulen O, et al. The E3 ligase COP1 promotes ERalpha signaling and suppresses EMT in breast cancer[J]. Oncogene, 2022, 41(2): 173-190.
14
Hu X, Xu Q, Wan H, et al. PI3K-Akt-mTOR/PFKFB3 pathway mediated lung fibroblast aerobic glycolysis and collagen synthesis in lipopolysaccharide-induced pulmonary fibrosis[J]. Lab Invest, 2020, 100(6): 801-811.
15
Xu X, Piao HN, Aosai F, et al. Arctigenin protects against depression by inhibiting microglial activation and neuroinflammation via HMGB1/TLR4/NF-kappaB and TNF-alpha/TNFR1/NF-kappaB pathways[J]. Br J Pharmacol, 2020, 177(22): 5224-5245.
16
White WL. Erratum to: Why I hate the index finger[J]. Hand (N Y), 2011, 6(2): 233.
17
Kim YJ, Lee JH, Jin S, et al. Primate-specific miR-944 activates p53-dependent tumor suppression in human colorectal cancers[J]. Cancer Lett, 2019, 440-441: 168-179.
18
Qi X, Luo Y, Mengyong X, et al. Mechanisms of alveolar type 2 epithelial cell death during acute lung injury[J]. Stem Cells, 2023, 41(12): 1113-1132.
19
Cao J, Mai H, Chen Y, et al. Ketamine promotes LPS-Induced pulmonary autophagy and reduces apoptosis through the AMPK/mTOR pathway[J]. Contrast Media Mol Imaging, 2022, 2022: 8713701.
20
Zheng B, Yang H, Zhang J, et al. Lidocaine alleviates sepsis-induced acute lung injury in mice by suppressing tissue factor and matrix metalloproteinase-2/9[J]. Oxid Med Cell Longev, 2021, 2021: 3827501.
21
Nakahara H, Song J, Sugimoto M, et al. Anti-interleukin-6 receptor antibody therapy reduces vascular endothelial growth factor production in rheumatoid arthritis[J]. Arthritis Rheum, 2003, 48(6): 1521-1529.
22
Deng Y, Huang X, Hu Y, et al. Deficiency of endothelial FGFR1 signaling via upregulation of ROCK2 activity aggravated ALI/ARDS[J]. Front Immunol, 2023, 14: 1041533.
23
Qian J, Chen X, Shu S, et al. Design and synthesis novel di-carbonyl analogs of curcumin (DACs) act as potent anti-inflammatory agents against LPS-induced acute lung injury (ALI)[J]. Eur J Med Chem, 2019, 167: 414-425.
24
Zhang J, Zhang M, Zhang W H, et al. Total flavonoids of Inula japonica alleviated the inflammatory response and oxidative stress in LPS-induced acute lung injury via inhibiting the sEH activity: Insights from lipid metabolomics[J]. Phytomedicine, 2022, 107: 154380.
25
Wang Y, Liu F, Chen L, et al. Neutrophil extracellular traps (NETs) promote non-small cell lung cancer metastasis by suppressing lncRNA MIR503HG to activate the NF-kappaB/NLRP3 inflammasome pathway[J]. Front Immunol, 2022, 13: 867516.
26
Furtmuller PG, Burner U, Obinger C. Reaction of myeloperoxidase compound I with chloride, bromide, iodide, and thiocyanate[J]. Biochemistry, 1998, 37(51): 17923-17930.
27
Cederlund M, Deronic A, Pallon J, et al. A1M/alpha1-microglobulin is proteolytically activated by myeloperoxidase, binds its heme group and inhibits low density lipoprotein oxidation[J]. Front Physiol, 2015, 6: 11.
28
Zheng F, Wu X, Zhang J, et al. Sevoflurane reduces lipopolysaccharide-induced apoptosis and pulmonary fibrosis in the RAW264.7 cells and mice models to ameliorate acute lung injury by eliminating oxidative damages[J]. Redox Rep, 2022, 27(1): 139-149.
29
Tan KO, Tan KM, Chan SL, et al. MAP-1, a novel proapoptotic protein containing a BH3-like motif that associates with Bax through its Bcl-2 homology domains[J]. J Biol Chem, 2001, 276(4): 2802-2807.
30
Lv X, Lu X, Zhu J, et al. Lipopolysaccharide-induced acute lung injury is associated with increased Ran-binding protein in microtubule-organizing center (RanBPM) molecule expression and mitochondria-mediated apoptosis signaling pathway in a mouse model[J]. Med Sci Monit, 2020, 26: e923172.
31
Ruvolo PP, Deng X, May WS. Phosphorylation of Bcl2 and regulation of apoptosis[J]. Leukemia, 2001, 15(4): 515-522.
32
Bruey JM, Bruey-Sedano N, Luciano F, et al. Bcl-2 and Bcl-XL regulate proinflammatory caspase-1 activation by interaction with NALP1[J]. Cell, 2007, 129(1): 45-56.
33
Zhou L, Wang S, Cao L, et al. Lead acetate induces apoptosis in Leydig cells by activating PPARgamma/caspase-3/PARP pathway[J]. Int J Environ Health Res, 2021, 31(1): 34-44.
34
Sen T, Sen N, Noordhuis MG, et al. OGDHL is a modifier of AKT-dependent signaling and NF-kappaB function[J]. PLoS One, 2012, 7(11): e48770.
35
Liu Y, Zeng H, Hou Y, et al. Calmodulin binding activates chromobacterium CopC effector to ADP-riboxanate host apoptotic caspases[J]. mBio, 2022, 13(3): e69022.
[1] 李璐璐, 马利红, 金佳佳, 谷伟. 干扰素基因刺激因子通过肺巨噬细胞胞葬功能调控急性肺损伤小鼠修复的研究[J]. 中华危重症医学杂志(电子版), 2024, 17(02): 97-103.
[2] 孙艺玮, 陈炜, 秦巍, 杜景辰, 孟昕, 周永军. 血管腔内介入治疗糖尿病足合并下肢动脉硬化闭塞症患者术后再狭窄与血清炎症因子的相关性[J]. 中华损伤与修复杂志(电子版), 2024, 19(01): 34-40.
[3] 杜贵伟, 陆勇, 成博, 贺薏, 梁爽. 钬激光碎石术术后联合坦索罗辛治疗对输尿管结石患者的影响分析[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 491-496.
[4] 廖江荣, 吴秀琳, 陈光春, 郭亮, 吕慈, 蔡俊, 陈夕. 急性主动脉夹层并发急性肺损伤的研究新进展[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 488-492.
[5] 顾晓凌, 吴冠楠, 宋勇. 核因子E2相关因子2(Nrf2)与铁死亡在脓毒症相关急性肺损伤中的研究进展[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 324-328.
[6] 李玉娟, 艾芳, 熊欢庆, 陈键, 刘刚, 李志超, 金发光. "丹蛇"组方对小鼠急性肺损伤的治疗作用[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 171-177.
[7] 陈向军, 王在强, 王博荣, 王莉, 方芳, 金发光, 王光辉. PM2.5通过激活颗粒酶B/IL-18信号通路促进炎症因子表达[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 207-211.
[8] 方慧慧, 方明, 黄娟, 张华, 王晓娟. 布地格福吸入治疗对COPD患者IL-6、CRP水平及肺功能的影响[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 91-94.
[9] 张婵, 吕瑶, 张小燕, 张鸣青. 不同时机局部神经阻滞在开腹肝切除中的镇痛效果比较[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 189-194.
[10] 史亚波, 李扬, 黄长文. 缺血-再灌注损伤促进肝癌复发机制的研究进展[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 96-99.
[11] 林玲, 李京儒, 沈瑞华, 林惠, 乔晞. 基于生物信息学分析小鼠急性肾损伤和急性肺损伤的枢纽基因[J]. 中华肾病研究电子杂志, 2024, 13(03): 134-144.
[12] 戴伟川, 郭协力, 方仲宁, 蔡文华, 洪天生, 田夏阳. 显微镜下周围神经松解术治疗腰椎间盘突出症术后残余神经症状的疗效分析[J]. 中华神经创伤外科电子杂志, 2024, 10(02): 84-90.
[13] 李浩南, 张煜彭, 付焱, 冯继伟, 刘凯, 张文凯. 缝隙连接蛋白43在肺部疾病中的研究进展[J]. 中华重症医学电子杂志, 2024, 10(01): 60-65.
[14] 李秀玲, 连少锋, 荣刘涛, 李登峰, 饶蕴玉. 利巴韦林联合复方嗜酸乳杆菌治疗轮状病毒肠炎患儿的临床研究[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 369-372.
[15] 吕涛, 张琨, 李晨. 芍黄安肠汤治疗重度活动期溃疡性结肠炎大肠湿热证患者的疗效及对肠黏膜屏障、炎症因子和免疫功能的影响[J]. 中华消化病与影像杂志(电子版), 2024, 14(01): 16-20.
阅读次数
全文


摘要