切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2024, Vol. 17 ›› Issue (01) : 9 -13. doi: 10.3877/cma.j.issn.1674-6902.2024.01.002

论著

大蒜素改善博莱霉素诱导小鼠肺纤维化的作用分析
范会业1, 毛杨1, 王文静1, 李德峰1,()   
  1. 1. 400037 重庆,陆军(第三)军医大学第二附属医院临床医学研究中心
  • 收稿日期:2023-12-13 出版日期:2024-02-25
  • 通信作者: 李德峰
  • 基金资助:
    国家自然科学基金资助项目(82002446)

Analysis on the effect of Allicin on bleomycin induced pulmonary fibrosis in mice

Huiye Fan1, Yang Mao1, Wenjing Wang1, Defeng Li1,()   

  1. 1. Clinical Medical Research Center, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
  • Received:2023-12-13 Published:2024-02-25
  • Corresponding author: Defeng Li
引用本文:

范会业, 毛杨, 王文静, 李德峰. 大蒜素改善博莱霉素诱导小鼠肺纤维化的作用分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 9-13.

Huiye Fan, Yang Mao, Wenjing Wang, Defeng Li. Analysis on the effect of Allicin on bleomycin induced pulmonary fibrosis in mice[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2024, 17(01): 9-13.

目的

建立博莱霉素制备肺纤维化小鼠模型,分析大蒜素对肺纤维化的改善作用。

方法

选择C57BL/6小鼠24只,分成4组,每组6只,分别为正常对照组、正常给药组、模型组和模型给药组。模型组和模型给药组小鼠气道内单次滴注100 μl博莱霉素(浓度5 mg·kg)诱导小鼠肺纤维化。7 d后正常给药组和模型给药组每日给予100 μl大蒜素(浓度5 mg·kg)治疗,正常对照组和模型组每日给予等量生理盐水,3周后小鼠行安乐死,取肺组织备用。取部分新鲜肺组织包埋切片,HE、Masson染色,比较各组小鼠肺组织病理变化,检测肺组织羟脯氨酸(hydroxyproline, HYP)、总超氧化物歧化酶(total superoxide dismutase, T-SOD)及丙二醛(malondialdehyde, MDA)。

结果

小鼠1 d、7 d、14 d、28 d体质量:正常对照组(20.49±0.55)、(22.09±0.51)、(23.76±0.57)、(25.08±0.64)g;正常给药组(20.55±0.65)、(21.79±0.70)、(23.12±0.57)、(24.64±0.49)g;模型组(20.56±0.74)、(19.78±0.77)、(18.70±0.86)、(17.67±1.11)g;模型给药组(20.78±0.77)、(21.49±0.81)、(22.45±0.86)、(23.81±0.72)g。大蒜素治疗后小鼠肺泡炎减轻,肺纤维化程度改善。肺组织中HYP含量:正常对照组(0.87±0.09)μg/ml,正常给药组(0.86±0.03)μg/ml,模型组(1.54±0.24)μg/ml,模型给药组(0.90±0.09)μg/ml;T-SOD活性水平:正常对照组(24.20±0.11)U/mg,正常给药组(24.29±0.14)U/mg,模型组(14.75±0.64)U/mg,模型给药组(19.25±0.69)U/mg;MDA含量:正常对照组(1.21±0.08)nmol/mg,正常给药组(1.18±0.13)nmol/mg,模型组(3.23±0.07)nmol/mg,模型给药组(2.42±0.05)nmol/mg。

结论

大蒜素通过降低肺组织中HYP、MDA含量,升高T-SOD活性,对小鼠肺纤维化具有改善作用。

Objective

To establish a bleomycin-induced pulmonary fibrosis mouse model and evaluate the therapeutic effects of allicin on pulmonary fibrosis.

Method

Twenty-four C57BL/6 mice were divided into four groups, six mice per group, as follows: normal control, normal treated, model, and model treated groups. The model and model treated mice were induced with pulmonary fibrosis by intratracheal administration of 100 μl bleomycin (5 mg·kg concentration). After seven days, both normal treated and model treated groups received daily 100 μl of allicin (5 mg·kg concentration) for treatment, while equivalent volumes of saline were administered daily to the normal control and model groups. After three weeks, the mice were euthanized, and lung tissues were harvested for analysis. Fresh lung tissue samples were embedded, sectioned, and stained with HE and Masson′s trichrome to compare the pathological changes among the different groups. Additionally, lung tissue levels of hydroxyproline (HYP), total superoxide dismutase (T-SOD) activity, and malondialdehyde (MDA) content were measured.

Result

Mouse weights at 1, 7, 14, and 28 days were: normal control group (20.49±0.55), (22.09±0.51), (23.76±0.57), (25.08±0.64)g; normal treated group (20.55±0.65), (21.79±0.70), (23.12±0.57), (24.64±0.49)g; model group (20.56±0.74), (19.78±0.77), (18.70±0.86), (17.67±1.11)g; model treated group (20.78±0.77), (21.49±0.81), (22.45±0.86), (23.81±0.72)g. Post-treatment with allicin, there was a reduction in alveolitis and significant improvement in pulmonary fibrosis. The pulmonary tissue HYP concentration values were: normal control group (0.87±0.09) μg/ml, normal treated group (0.86±0.03) μg/ml, model group (1.54±0.24) μg/ml, and model treated group (0.90±0.09) μg/ml. T-SOD activity levels: normal control group (24.20±0.11) U/mg, normal treated (24.29±0.14) U/mg, model group (14.75±0.64) U/mg, model treated group (19.25±0.69) U/mg. MDA contents: normal control group (1.21±0.08) nmol/mg, normal treated group (1.18±0.13) nmol/mg, model group (3.23±0.07) nmol/mg, model treated group (2.42±0.05) nmol/mg.

Conclusion

Allicin mitigates pulmonary fibrosis in the bleomycin-induced mouse model by reducing HYP and MDA levels and increasing T-SOD activity in lung tissue.

表1 每组小鼠体质量变化比较[(±s),g]
图1 每组小鼠肺组织病理变化(HE染色,×100)。注:A:正常对照组;B:正常给药组;C:模型组;D:模型给药组
图2 每组小鼠肺组织病理变化(Masson染色,×100)。注:A:正常对照组;B:正常给药组;C:模型组;D:模型给药组
图3 大蒜素对肺纤维化小鼠肺组织HYP水平的影响
表2 大蒜素对肺纤维化小鼠肺组织T-SOD活性、MDA、HYP含量结果[(±s),n=6]
1
Deng Z, Fear MW, Choi YS, et al. The extracellular matrix and mechanotransduction in pulmonary fibrosis[J]. Int J Biochem Cell Biol, 2020, 126: 05802.
2
Guler SA, Lindell KO, Ryerson CJ, et al. What is idiopathic pulmonary fibrosis IPF Part 1[J]. Am J Respir Crit Care Med, 2021, 203: P5-P6.
3
Podolanczuk Anna J, Wong Alyson W, Saito Shigeki, et al. Update in interstitial lung disease 2020[J]. Am J Respir Crit Care Med, 2021, 203(11): 1343-1352.
4
George PM, Patterson CM, Thillai M, et al. Lung transplantation for idiopathic pulmonary fibrosis[J]. Lancet RespirMed, 2019, 7(3): 271-282.
5
胡新春,李昌波,刘 翱,等. N-乙酰半胱氨酸与IL-27对博莱霉素诱导的小鼠肺纤维化的影响[J/CD]. 中华肺部疾病杂志(电子版), 2019, 12(6): 691-696.
6
Tepede Abisola, Yogaratnam Dinesh. Nintedanib for idiopathic pulmonary fibrosis[J]. J Pharm Pract, 2019, 32(2): 199-206.
7
Shan Yungang, Chen Deqing, Jin Limin, et al. Allicin ameliorates renal ischemia/reperfusion injury via inhibition of oxidative stress and inflammation in rats[J]. Biomed Pharmacother, 2021, 142: 112077.
8
Mondal Arijit, Banerjee Sabyasachi, Bose Sankhadip, et al. Garlic constituents for cancer prevention and therapy: fromphytochemistry to novel formulations[J]. PharmRes, 2022, 175: 105837.
9
Zucca P, Orhan IE, Armstrong L, et al. Allicin and health:A comprehensive review[J]. Trends Food SciTechnol, 2019, 86: 502-516.
10
Zhang Ke, Si Xiao-Ping, Huang Jian, et al. Preventive effects of rhodiola rosea L.on Bleomycin-induced pulmonary fibrosis in rats[J]. Int J Mol Sci, 2016, 17(6): 879.
11
王殷彤,王成功,程锦国,等. 莪术油通过抑制铁死亡减轻博来霉素诱导的小鼠肺纤维化的机制研究[J]. 中草药2023, 54(16): 5274-5282.
12
王志超,冯凡超,周贤梅,等. 三种方法气管灌注博来霉素诱导小鼠肺纤维化的比较[J]. 中国比较医学杂志2019, 5(29): 51-57.
13
卢锦辉,张 丽,张芳芳,等. 博来霉素诱导小鼠肺纤维化模型的建立及评价[J]. 兰州大学学报(医学版), 2019, 6(15): 37-42.
14
王若利,王 潇,岳红梅. 紫檀芪对肺纤维化小鼠的抗氧化作用研究[J]. 中国临床药理学杂志2021, 37(5): 532-535.
15
殷晓红,白云苹,李建生,等. 金水缓纤组分方Ⅱ通过抑制氧化应激改善大鼠肺纤维化[J]. 中华中医药杂志2023, 38(3): 1213-1217.
16
Deng Z, Fear MW, Choi YS, et al.The extracellular matrix and mechanotransduction in pulmonary fibrosis[J]. Int J Biochem Cell Biol, 2020, 126: 05802.
17
Ommati Mohammad Mehdi, Sabouri Samira, Niknahad Hossein, et al. Pulmonary inflammation, oxidative stress, and fibrosis in a mouse model of cholestasis: the potential protective propertiesof the dipeptide carnosine[J]. Naunyn Schmiedebergs Arch Pharmacol, 2023, 396: 1129-1142.
18
Ren Guoqing, Xu Gonghao, Zhang Chaofeng, et al. Modulation of bleomycin-induced oxidative stress and pulmonary fibrosis by Ginkgetin in Mice via AMPK[J]. CurrMol Pharmacol, 2023, 16: 217-227.
19
Ma Wen-hui, Ma Wen-hui, Hou Gang, et al. Protective effects of GHK-Cu in bleomycin-induced pulmonary fibrosis viaanti-oxidative stress and anti-inflammation pathways[J]. Life Sci, 2020, 241: 117139.
20
Estornut Cristina, Milara Javier, Cortijo Julio, et al. Targeting oxidative stress as a therapeutic approach for idiopathic pulmonary fibrosis[J]. Front Pharmacol, 2022, 12: 794997.
21
朱 雯,刘天伟,张子军,等. 大蒜素的生物学功能及其在反刍动物生产中的应用研究进展[J]. 动物营养学报2021, 33(11): 6009-6016.
22
Irfan M, Kim M, Kim KS, et al. Fermented garlic ameliorates hypercholesterolemia and inhibits platelet activation[J]. Evid Based Complement Alternat Med, 2019, 2019: 3030967.
23
Chen H, Zhu B, Zhao L, et al. Allicin inhibits proliferation and invasion in vitro and in vivo via SHP-1-mediated STAT3 signaling in cholangiocarcinoma[J]. Cell Physiol Biochem, 2018, 47(2): 641-653.
24
Wang X, Zhang C, Chen C, et al. Allicin attenuates lipopolysaccharide-induced acute lung injury in neonatal rats via the PI3K/Akt pathway[J]. Mol Med Rep, 2018, 17(5): 6777-6783.
25
José L.S.G, Constanza E.M.O, Horacio.O.A, et al. Anti-inflammatory effect of allicin associated with fibrosis in pulmonary arterial hypertension[J]. IntJMolSci, 2021, 22(16): 8600.
26
Rong H, Lin H, Wen XB, et al. The TOR pathway participates in the regulation of growthdevelopment in juvenile spotted drum (Nibeadiacanthus)under different dietary hydroxyproline supplementation[J]. Fish Physiol Biochem, 2020, 46: 2085-2099.
27
荣 华,王正阳,毕保良,等. 甘氨酸、脯氨酸及羟脯氨酸介导胶原蛋白代谢研究进展[J]. 西北农林科技大学学报(自然科学版), 2021, 49(11): 53-61.
28
魏 云,王 晶,韩 迪,等. 基于Nrf2调控氧化应激研究麦味养肺汤对肺纤维化小鼠的保护作用及机制[J]. 中国中药杂志202348(24):6682-6692.
29
Chi AP, Li H, LiangT, et al. Anti-fatigue activity of a novel polysaccharide conjugates from Ziyang green tea[J]. Int J Biol Macromol, 2015, 80: 566-572.
30
吴 超,何新颖,孙云川,等. 清热凉血方对急性放射性肠炎大鼠一般状况及MDA、SOD表达的影响[J]. 中国中医基础医学杂志2020, 26(3): 338-340.
[1] 李安琪, 徐祎琳, 向天新. 新型冠状病毒感染后肺纤维化病变诊治进展[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 294-298.
[2] 杨立胜, 刘梦鸾, 任维聃, 姜国胜, 刘桂伟. 基于血清肿瘤标志物预测结直肠癌肝转移模型价值分析[J]. 中华普通外科学文献(电子版), 2024, 18(01): 39-43.
[3] 中华医学会器官移植学分会肺移植学组, 国家肺移植质控中心. 新型冠状病毒感染肺移植受者选择中国专家建议[J]. 中华移植杂志(电子版), 2023, 17(01): 13-16.
[4] 张晶晶, 刘锦, 张玉华. 高流量无创呼吸湿化治疗仪对肺纤维化并发感染及氧分压的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(06): 883-885.
[5] 许娟, 张党锋. 尼达尼布对肺纤维化小鼠肺功能及内质网应激反应的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 673-675.
[6] 陈向军, 顾兴, 王在强, 王光辉, 王莉, 方芳, 金发光, 王瑞璇. 颗粒酶B激活TGF-β1/Smad3通路促进博来霉素导致的肺纤维化[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 630-634.
[7] 谷先勇, 徐娟. 特发性肺纤维化合并T2DM炎症水平与预后相关性分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 721-723.
[8] 李青原, 冯同, 邱雪琴, 李万成. 迷迭香提取物防治肺纤维化研究进展[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 908-911.
[9] 王赛妮, 徐旺, 李华娟, 唐英俊, 李卫霞, 李羲, 黄华萍. 影像表现为肺纤维化的肉芽肿性多血管炎一例报告并文献复习[J]. 中华肺部疾病杂志(电子版), 2022, 15(04): 603-605.
[10] 杜文峰, 周玲, 李琪. 血清KL-6对特发性肺纤维化患者诊断及预后的意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(02): 218-220.
[11] 刘雪娇, 盛伟利, 丁艳艳, 尹凤先. 特发性肺纤维化急性加重患者预后危险因素及意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(02): 212-214.
[12] 蒋梦洁, 钱治军, 徐思, 梁伟. 低强度脉冲超声波治疗冻结肩模型兔的实验研究[J]. 中华肩肘外科电子杂志, 2023, 11(01): 30-34.
[13] 高菲, 陈娜, 张才擎. microRNA-133a在抗肺纤维化作用中的研究进展[J]. 中华临床医师杂志(电子版), 2021, 15(10): 794-796.
[14] 吕昆明, 王沙沙, 万军, 令狐恩强. 胃食管反流病与特发性肺纤维化关系的研究进展[J]. 中华胃肠内镜电子杂志, 2023, 10(02): 121-124.
[15] 祁春雷, 翁川晴, 刘念念, 王信淳, 苏俊伟, 肖平喜. Takotsubo综合征患者系统氧化应激与心脏功能相关性研究[J]. 中华卫生应急电子杂志, 2022, 08(03): 134-140.
阅读次数
全文


摘要