1 |
Kolb P, Upagupta C, Vierhout M, et al. The importance of interventional timing in the bleomycin model of pulmonary fibrosis[J]. Eur Respir J, 2020, 55(6): 1901105.
|
2 |
Wuyts WA, Wijsenbeek M, Bondue B, et al. Idiopathic pulmonary fibrosis: Best practice in monitoring and managing a relentless fibrotic disease[J]. Respiration, 2020,99(1): 73-82.
|
3 |
于晓涛,杨忠杰,应真真,等. 基于生物信息学筛选特发性肺纤维化差异基因及中药预测[J]. 中医药信息,2022, 39(9): 68-74.
|
4 |
杨伟强,赵 峰. 特发性肺纤维化发病机制的研究进展[J]. 医学综述,2020, 26(9): 1684-1689.
|
5 |
Spagnolo P, Grunewald J, du Bois RM. Genetic determinants of pulmonary fibrosis: evolving concepts[J]. Lancet Respir Med, 2014, 2(5): 416-428.
|
6 |
邱 静,孙 建,李万成. 特发性肺纤维化中TGF-β1诱导上皮细胞间质转化作用机制研究进展[J/CD]. 中华肺部疾病杂志(电子版), 2015, 9(2): 212-214.
|
7 |
Zeglinski MR, Granville DJ. Granzymes in cardiovascular injury and disease[J]. Cell Signal, 2020, 76: 109804.
|
8 |
王在强,金发光,傅恩清. 颗粒酶B在组织损伤修复中的研究进展[J/CD]. 中华损伤与修复杂志(电子版), 2021,16(4): 349-352.
|
9 |
Richardson KC, Jung K, Pardo J, et al. Noncytotoxic roles of granzymes in health and disease[J]. Physiology (Bethesda), 2022, 37(6): 323-348.
|
10 |
邓玲玲,欧阳博书,魏 颖,等. 上皮间质转化在特发性肺纤维化及其信号通路中的研究进展[J]. 复旦学报:医学版,2022, 49(4): 614-619.
|
11 |
Hutchinson J, Fogarty A, Hubbard R, et al. Global incidence and mortality of idiopathic pulmonary fibrosis: a systematic review[J]. Eur Respir J, 2015, 46(3): 795-806.
|
12 |
沈忱悠,李桂荣,卫 栋,等. 博来霉素诱导肺纤维化小鼠肺组织差异转录因子的筛选与功能分析[J]. 医学研究生学报,2022, 35(8): 798-805.
|
13 |
陈叶青,仇双逸,范欣生,等. 博来霉素诱导的肺纤维化形成不同时期模型大鼠血清代谢组学研究[J]. 中国药理学通报,2022, 38(4): 512-518.
|
14 |
Shen Y, Cheng F, Sharma M, et al. Granzyme B deficiency protects against angiotensin Ⅱ-induced cardiac fibrosis[J]. Am J Pathol, 2016, 186(1): 87-100.
|
15 |
Chester D, Brown AC. The role of biophysical properties of provisional matrix proteins in wound repair[J]. Matrix Biol, 2017, 60-61: 124-140.
|
16 |
Gharaee-Kermani M, Hu B, Phan SH, et al. Recent advances in molecular targets and treatment of idiopathic pulmonary fibrosis: focus on TGF-β signaling and the myofibroblast[J]. Curr Med Chem, 2009, 16(11): 1400-1417.
|
17 |
Sriram S, Robinson P, Pi L, et al. Triple combination of siRNAs targeting TGF-β1, TGF-βR2, and CTGF enhances reduction of collagen I and smooth muscle actin in corneal fibroblasts[J]. Invest Ophthalmol Vis Sci, 2013, 54(13): 8214-8223.
|
18 |
Hu HH, Chen DQ, Wang YN, et al. New insights into TGF-β/Smad signaling in tissue fibrosis[J]. Chem Biol Interact, 2018, 292: 76-83.
|
19 |
Chen L, Yang T, Lu DW, et al. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment[J]. Biomed Pharmacother, 2018, 101: 670-681.
|
20 |
Hu HH, Chen DQ, Wang YN, et al. New insights into TGF-β/Smad signaling in tissue fibrosis[J]. Chem Biol Interact, 2018, 292: 76-83.
|
21 |
Kang JH, Jung MY, Yin X, et al. Cell-penetrating peptides selectively targeting SMAD3 inhibit profibrotic TGF-β signaling[J]. J Clin Invest, 2017, 127(7): 2541-2554.
|
22 |
Buzza MS, Zamurs L, Sun J, et al. Extracellular matrix remodeling by human granzyme B via cleavage of vitronectin, fibronectin, and laminin[J]. J Biol Chem, 2005, 280(25): 23549-23558.
|
23 |
Choy JC, Hung VH, Hunter AL, et al. Granzyme B induces smooth muscle cell apoptosis in the absence of perforin: involvement of extracellular matrix degradation[J]. Arterioscler Thromb Vasc Biol, 2004, 24(12): 2245-2250.
|
24 |
Boivin WA, Shackleford M, Vanden HA, et al. Granzyme B cleaves decorin, biglycan and soluble betaglycan, releasing active transforming growth f factor-β1[J]. PLoS One, 2012, 7(3): e33163.
|
25 |
余洪刚,付大海,杨利生,等. 复明汤调控TGF-β1/Smad3通路抑制肺成纤维细胞活化及肺上皮损伤减轻博来霉素诱导的肺纤维化[J]. 天津中医药,2020, 37(12): 1412-1419.
|
26 |
邱 静,李万成. TGF-β1/Smad3在博来霉素肺纤维化大鼠中的作用[J]. 成都医学院学报,2017, 12(3): 271-276.
|
27 |
Kurschus FC, Kleinschmidt M, Fellows E, et al. Killing of target cells by redirected granzyme B in the absence of perforin[J]. FEBS Lett, 2004, 562(1-3): 87-92.
|
28 |
Cullen SP, Adrain C, Luthi AU, et al. Human and murine granzyme B exhibit divergent substrate preferences[J]. J Cell Biol, 2007, 176(4): 435-444.
|
29 |
Kaiserman D, Bird CH, Sun J, et al. The major human and mouse granzymes are structurally and functionally divergent[J]. J Cell Biol, 2006,175(4):619-630.
|
30 |
Kevin KK, Ying W, Charles S, et al. Epithelial cell alpha3beta1 integrin links beta-catenin and Smad signaling to promote myofibroblast formation and pulmonary fibrosis[J]. J Clin Invest, 2009, 119(1): 213-224.
|