切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2023, Vol. 16 ›› Issue (05) : 630 -634. doi: 10.3877/cma.j.issn.1674-6902.2023.05.005

论著

颗粒酶B激活TGF-β1/Smad3通路促进博来霉素导致的肺纤维化
陈向军, 顾兴, 王在强, 王光辉, 王莉, 方芳, 金发光, 王瑞璇()   
  1. 710100 西安,西安市胸科医院重症医学二科
    710100 西安,西安市胸科医院呼吸与危重症医学科
    710038 西安,空军军医大学第二附属医院呼吸与危重症医学科
  • 收稿日期:2023-01-13 出版日期:2023-10-25
  • 通信作者: 王瑞璇
  • 基金资助:
    陕西省重点研发计划(2018ZDCXL-SF-02-03-02)

Granzyme B promotes bleomycin-induced pulmonary fibrosis by activating TGF-β1/Smad3 pathway

Xiangjun Chen, Xing Gu, Zaiqiang Wang, Guanghui Wang, Li Wang, Fang Wan, Faguang Jin, Ruixuan Wang()   

  1. The second Department of Intensive Care Medicine, Xi′an Chest Hospital, Xi′an 710100, China
    Department of Respiratory and Critical Care Medicine, Xi′an Chest Hospital, Xi′an 710100, China
    Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Air Force Medical University, Xi′an 710038, China
  • Received:2023-01-13 Published:2023-10-25
  • Corresponding author: Ruixuan Wang
引用本文:

陈向军, 顾兴, 王在强, 王光辉, 王莉, 方芳, 金发光, 王瑞璇. 颗粒酶B激活TGF-β1/Smad3通路促进博来霉素导致的肺纤维化[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 630-634.

Xiangjun Chen, Xing Gu, Zaiqiang Wang, Guanghui Wang, Li Wang, Fang Wan, Faguang Jin, Ruixuan Wang. Granzyme B promotes bleomycin-induced pulmonary fibrosis by activating TGF-β1/Smad3 pathway[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2023, 16(05): 630-634.

目的

分析颗粒酶B在博来霉素导致大鼠肺纤维化中的作用。

方法

将21只SD大鼠随机分为三组:对照组、模型组、干预组,每组7只。模型组和干预组采用经气管内注入博来霉素(5 mg/kg)诱导大鼠肺纤维化动物模型。干预组在造模前1 h、造模第7天、第14天和第21天经尾静脉注射颗粒酶B抑制剂,其它两组经尾静脉注射等体积生理盐水,其余操作相同。28 d后处死大鼠取出肺脏,采用免疫荧光和Western blot检测颗粒酶B、胶原蛋白I、转化生长因子β1(transforming growth factor β1)和Smad3蛋白表达情况,采用Masson染色检测肺组织纤维化情况。

结果

模型组较对照组大鼠肺组织胶原蛋白Ⅰ表达上调,胶原蛋白沉积增加,肺纤维化加重。干预组较模型组胶原蛋白Ⅰ表达下调,胶原蛋白沉积减少,肺纤维化减轻。模型组较对照组大鼠肺组织TGF-β1和Smad3蛋白表达增加,干预组较模型组TGF-β1和Smad3蛋白表达降低。

结论

颗粒酶B促进了博来霉素导致的大鼠肺纤维化,机制可能与激活TGF-β1/Smad3信号通路有关。

Objective

To explore the role of granzyme B in bleomycin-induced pulmonary fibrosis in rats.

Methods

21 SD rats were randomly divided into three groups: control group, model group and intervention group, with 7 rats in each group. The model group and the intervention group were injected with bleomycin (5 mg/kg) through the trachea to induce pulmonary fibrosis. The intervention group was injected with granzyme B inhibitor through caudal vein 1 hour before modeling, on day 7, 14 and 21, and the other two groups were injected with equal volume of normal saline. The remaining operations were the same. After 28 days, the rats were killed and the lungs were removed. The protein expressions of granzyme B, collagen I, TGF-β1 and Smad3 were detected by immunofluorescence and Western blot, and the pulmonary fibrosis was detected by Masson staining.

Results

Compared with the control group, collagen I expression, collagen deposition and pulmonary fibrosis were up-regulated in the model group. Compared with model group, collagen I expression was down-regulated, collagen deposition was reduced and pulmonary fibrosis was alleviated in the intervention group. The protein expressions of TGF-β1 and Smad3 in lung tissue of model group were increased compared with that of control group, while the protein expressions of TGF-β1 and Smad3 in intervention group were decreased compared with that of model group.

Conclusion

Granzyme B can promote bleomycin-induced pulmonary fibrosis in rats, and the mechanism may be related to the activation of TGF-β1/Smad3 signaling pathway.

图1 各组大鼠肺组织Masson染色结果
图2 各组大鼠肺组织胶原蛋白I表达情况
图3 免疫荧光显示各组大鼠肺组织中颗粒酶B表达情况
图4 各组大鼠肺组织颗粒酶B、TGF-β1和Smad3蛋白表达情况
1
Kolb P, Upagupta C, Vierhout M, et al. The importance of interventional timing in the bleomycin model of pulmonary fibrosis[J]. Eur Respir J, 2020, 55(6): 1901105.
2
Wuyts WA, Wijsenbeek M, Bondue B, et al. Idiopathic pulmonary fibrosis: Best practice in monitoring and managing a relentless fibrotic disease[J]. Respiration, 202099(1): 73-82.
3
于晓涛,杨忠杰,应真真,等. 基于生物信息学筛选特发性肺纤维化差异基因及中药预测[J]. 中医药信息2022, 39(9): 68-74.
4
杨伟强,赵 峰. 特发性肺纤维化发病机制的研究进展[J]. 医学综述2020, 26(9): 1684-1689.
5
Spagnolo P, Grunewald J, du Bois RM. Genetic determinants of pulmonary fibrosis: evolving concepts[J]. Lancet Respir Med, 2014, 2(5): 416-428.
6
邱 静,孙 建,李万成. 特发性肺纤维化中TGF-β1诱导上皮细胞间质转化作用机制研究进展[J/CD]. 中华肺部疾病杂志(电子版), 2015, 9(2): 212-214.
7
Zeglinski MR, Granville DJ. Granzymes in cardiovascular injury and disease[J]. Cell Signal, 2020, 76: 109804.
8
王在强,金发光,傅恩清. 颗粒酶B在组织损伤修复中的研究进展[J/CD]. 中华损伤与修复杂志(电子版), 202116(4): 349-352.
9
Richardson KC, Jung K, Pardo J, et al. Noncytotoxic roles of granzymes in health and disease[J]. Physiology (Bethesda), 2022, 37(6): 323-348.
10
邓玲玲,欧阳博书,魏 颖,等. 上皮间质转化在特发性肺纤维化及其信号通路中的研究进展[J]. 复旦学报:医学版2022, 49(4): 614-619.
11
Hutchinson J, Fogarty A, Hubbard R, et al. Global incidence and mortality of idiopathic pulmonary fibrosis: a systematic review[J]. Eur Respir J, 2015, 46(3): 795-806.
12
沈忱悠,李桂荣,卫 栋,等. 博来霉素诱导肺纤维化小鼠肺组织差异转录因子的筛选与功能分析[J]. 医学研究生学报2022, 35(8): 798-805.
13
陈叶青,仇双逸,范欣生,等. 博来霉素诱导的肺纤维化形成不同时期模型大鼠血清代谢组学研究[J]. 中国药理学通报2022, 38(4): 512-518.
14
Shen Y, Cheng F, Sharma M, et al. Granzyme B deficiency protects against angiotensin Ⅱ-induced cardiac fibrosis[J]. Am J Pathol, 2016, 186(1): 87-100.
15
Chester D, Brown AC. The role of biophysical properties of provisional matrix proteins in wound repair[J]. Matrix Biol, 2017, 60-61: 124-140.
16
Gharaee-Kermani M, Hu B, Phan SH, et al. Recent advances in molecular targets and treatment of idiopathic pulmonary fibrosis: focus on TGF-β signaling and the myofibroblast[J]. Curr Med Chem, 2009, 16(11): 1400-1417.
17
Sriram S, Robinson P, Pi L, et al. Triple combination of siRNAs targeting TGF-β1, TGF-βR2, and CTGF enhances reduction of collagen I and smooth muscle actin in corneal fibroblasts[J]. Invest Ophthalmol Vis Sci, 2013, 54(13): 8214-8223.
18
Hu HH, Chen DQ, Wang YN, et al. New insights into TGF-β/Smad signaling in tissue fibrosis[J]. Chem Biol Interact, 2018, 292: 76-83.
19
Chen L, Yang T, Lu DW, et al. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment[J]. Biomed Pharmacother, 2018, 101: 670-681.
20
Hu HH, Chen DQ, Wang YN, et al. New insights into TGF-β/Smad signaling in tissue fibrosis[J]. Chem Biol Interact, 2018, 292: 76-83.
21
Kang JH, Jung MY, Yin X, et al. Cell-penetrating peptides selectively targeting SMAD3 inhibit profibrotic TGF-β signaling[J]. J Clin Invest, 2017, 127(7): 2541-2554.
22
Buzza MS, Zamurs L, Sun J, et al. Extracellular matrix remodeling by human granzyme B via cleavage of vitronectin, fibronectin, and laminin[J]. J Biol Chem, 2005, 280(25): 23549-23558.
23
Choy JC, Hung VH, Hunter AL, et al. Granzyme B induces smooth muscle cell apoptosis in the absence of perforin: involvement of extracellular matrix degradation[J]. Arterioscler Thromb Vasc Biol, 2004, 24(12): 2245-2250.
24
Boivin WA, Shackleford M, Vanden HA, et al. Granzyme B cleaves decorin, biglycan and soluble betaglycan, releasing active transforming growth f factor-β1[J]. PLoS One, 2012, 7(3): e33163.
25
余洪刚,付大海,杨利生,等. 复明汤调控TGF-β1/Smad3通路抑制肺成纤维细胞活化及肺上皮损伤减轻博来霉素诱导的肺纤维化[J]. 天津中医药2020, 37(12): 1412-1419.
26
邱 静,李万成. TGF-β1/Smad3在博来霉素肺纤维化大鼠中的作用[J]. 成都医学院学报2017, 12(3): 271-276.
27
Kurschus FC, Kleinschmidt M, Fellows E, et al. Killing of target cells by redirected granzyme B in the absence of perforin[J]. FEBS Lett, 2004, 562(1-3): 87-92.
28
Cullen SP, Adrain C, Luthi AU, et al. Human and murine granzyme B exhibit divergent substrate preferences[J]. J Cell Biol, 2007, 176(4): 435-444.
29
Kaiserman D, Bird CH, Sun J, et al. The major human and mouse granzymes are structurally and functionally divergent[J]. J Cell Biol, 2006175(4):619-630.
30
Kevin KK, Ying W, Charles S, et al. Epithelial cell alpha3beta1 integrin links beta-catenin and Smad signaling to promote myofibroblast formation and pulmonary fibrosis[J]. J Clin Invest, 2009, 119(1): 213-224.
[1] 张锐, 沈雅芳, 安肖霞, 林双. 黄芩苷对博来霉素诱导肺纤维化小鼠的保护作用及其机制[J]. 中华危重症医学杂志(电子版), 2020, 13(01): 49-54.
[2] 李安琪, 徐祎琳, 向天新. 新型冠状病毒感染后肺纤维化病变诊治进展[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 294-298.
[3] 中华医学会器官移植学分会肺移植学组, 国家肺移植质控中心. 新型冠状病毒感染肺移植受者选择中国专家建议[J]. 中华移植杂志(电子版), 2023, 17(01): 13-16.
[4] 李青原, 冯同, 邱雪琴, 李万成. 迷迭香提取物防治肺纤维化研究进展[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 908-911.
[5] 王赛妮, 徐旺, 李华娟, 唐英俊, 李卫霞, 李羲, 黄华萍. 影像表现为肺纤维化的肉芽肿性多血管炎一例报告并文献复习[J]. 中华肺部疾病杂志(电子版), 2022, 15(04): 603-605.
[6] 杜文峰, 周玲, 李琪. 血清KL-6对特发性肺纤维化患者诊断及预后的意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(02): 218-220.
[7] 刘雪娇, 盛伟利, 丁艳艳, 尹凤先. 特发性肺纤维化急性加重患者预后危险因素及意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(02): 212-214.
[8] 李佳怡, 王亚菲, 郝月琴, 陈建攸. CXCL14、TGF-β1和CTGF水平与特发性肺纤维化的关系[J]. 中华肺部疾病杂志(电子版), 2021, 14(02): 222-224.
[9] 陈宇平, 朱毅. 特发性肺纤维化与胃食道返流研究进展[J]. 中华肺部疾病杂志(电子版), 2020, 13(04): 551-554.
[10] 孙莹, 宋晓萍, 孙伟. 探讨TGFβ1、PDGF、VEGF对特发性肺纤维化诊断及病情评估的临床意义[J]. 中华肺部疾病杂志(电子版), 2020, 13(01): 54-58.
[11] 张致苍, 雷尚昆. 血清LTBP2作为特发性肺纤维化患者预后标志物的研究[J]. 中华肺部疾病杂志(电子版), 2019, 12(06): 733-737.
[12] 胡新春, 李昌波, 孙杰, 邓超英, 肖华毅, 刘翱. N-乙酰半胱氨酸与IL-27对博莱霉素诱导的小鼠肺纤维化的影响[J]. 中华肺部疾病杂志(电子版), 2019, 12(06): 691-696.
[13] 高菲, 陈娜, 张才擎. microRNA-133a在抗肺纤维化作用中的研究进展[J]. 中华临床医师杂志(电子版), 2021, 15(10): 794-796.
[14] 吕昆明, 王沙沙, 万军, 令狐恩强. 胃食管反流病与特发性肺纤维化关系的研究进展[J]. 中华胃肠内镜电子杂志, 2023, 10(02): 121-124.
[15] 翟胜爽, 雷小红, 赵子锌, 王鹤, 卢林, 孙琳林. 涎液化糖链抗原-6在老年特发性肺纤维化诊治中的应用[J]. 中华老年病研究电子杂志, 2020, 07(02): 26-31.
阅读次数
全文


摘要