切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2024, Vol. 17 ›› Issue (01) : 51 -56. doi: 10.3877/cma.j.issn.1674-6902.2024.01.010

论著

多重耐药性肺结核治疗依从性预测分析
蔡小芳1,(), 高慧1, 葛军1, 邢慧芸1, 庄小燕1, 李小丁1   
  1. 1. 570311 海口,海南省人民医院感染科
  • 收稿日期:2023-10-28 出版日期:2024-02-25
  • 通信作者: 蔡小芳
  • 基金资助:
    海南省卫生健康行业科研项目(21A200141)

Prediction and analysis of treatment compliance of multi-drug resistant pulmonary tuberculosis

Xiaofang Cai1,(), Hui Gao1, Jun Ge1, Huiyun Xing1, Xiaoyan Zhuang1, Xiaoding Li1   

  1. 1. Infection Department of Hainan Provincial People′s Hospital, Haikou, 570311 China
  • Received:2023-10-28 Published:2024-02-25
  • Corresponding author: Xiaofang Cai
引用本文:

蔡小芳, 高慧, 葛军, 邢慧芸, 庄小燕, 李小丁. 多重耐药性肺结核治疗依从性预测分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(01): 51-56.

Xiaofang Cai, Hui Gao, Jun Ge, Huiyun Xing, Xiaoyan Zhuang, Xiaoding Li. Prediction and analysis of treatment compliance of multi-drug resistant pulmonary tuberculosis[J/OL]. Chinese Journal of Lung Diseases(Electronic Edition), 2024, 17(01): 51-56.

目的

分析某地区多重耐药性肺结核治疗情况,构建治疗依从性的预测模型。

方法

选取2019年3月至2022年12月我院收治的148例多重耐药性肺结核患者为对象,Morisky药物依从性量表(Morisky medication adherence scale, MMAS)<6分39例为观察组,MMAS 6~8分109例为对照组,对比两组人口社会学资料和临床资料,多因素Logistic回归分析治疗依从性的影响因素,构建多重耐药性肺结核治疗依从性不良的列线图预测模型。

结果

痰培养81例(54.73%)转阴,MMAS评分为(6.15±1.03)分,67例(45.27%)未转阴,MMAS评分为(5.76±1.05)分(P<0.05)。观察组年龄[(51.05±8.23) vs. (46.18±7.59)]岁和服药种数(>6种)[27例(69.23%)vs. 52例(47.71%)]及服药后不良反应[12例(30.77%)vs. 16例(14.68%)]高于对照组,受教育年限[(9.65±2.62) vs. (11.20±3.17)]年、个人平均月收入(<3 000元)[19例(48.72%)vs. 21例(19.27%)]、SSRS评分[(35.15±4.02) vs. (40.36±6.18)]分和疾病宣教比[18例(46.15%)vs. 71例(65.14%)]低于对照组(P<0.05)。多因素Logistic回归分析显示:年龄(OR=1.158)、受教育年限(OR=0.815)、个人平均月收入(<3 000元)(OR=27.408)和SSRS评分(OR=0.860)是多重耐药性肺结核治疗依从性的影响因素(P<0.05)。列线图预测模型显示:年龄增加5岁,列线图模型评分增加9分;受教育年限减少2年,列线图模型评分增加5分;个人平均月收入<3 000元对应列线图评分27.5分;SSRS评分降低5分,列线图模型增加13.5分。ROC曲线结果显示AUC为0.871(95%CI:0.811~0.931);校准曲线斜率和Hosmer-Lemeshow拟合优度检验(χ2=7.347,P=0.500)显示模型预测多重耐药性肺结核治疗依从性不良的发生风险一致性良好。

结论

多重耐药性肺结核患者治疗6个月后转阴54.73%;年龄增大和受教育年限、个人平均月收入及社会支持水平低是治疗依从性不良的危险因素,列线图模型可用于临床预估治疗依从性不良风险,具有临床意义。

Objective

To analyze the treatment situation of multi-drug resistant pulmonary tuberculosis in a certain area, and to build a prediction model for the treatment compliance of such patients.

Methods

All of 148 patients with multidrug-resistant pulmonary tuberculosis admitted to our hospital from March 2019 to December 2022 were selected as the research object, and the treatment status of the patients was followed up for 6 months. 39 patients with Morisky medication adherence scale (MMAS) <6 points were the observation group, and 109 patients with MMAS 6-8 points were the control group, the influencing factors of treatment compliance were confirmed by multivariate Logistic regression equation, which was used to construct a nomogram prediction model of poor treatment compliance of patients with drug-resistant tuberculosis.

Results

Sputum culture in 81 cases (54.73%) turned negative, MMAS score was (6.15±1.03), 67 cases (45.27%) did not turn negative, MMAS score was (5.76±1.05) points (P<0.05). The age of the observation group [(51.05±8.23) vs. (46.18±7.59)] years, the number of drug types (>6) [27 cases (69.23%) vs. 52 cases (47.71%)] and the adverse reactions after medication [12 cases (30.77%) vs. 16 cases (14.68%)] were higher than those of the control group. Years of education [(9.65±2.62) vs. (11.20±3.17)], average monthly personal income (<3 000 yuan) [19 cases (48.72%) vs. 21 cases (19.27%)], SSRS score [(35.15±4.02) vs. (40.36±6.18)] and the proportion of disease education [18 cases (46.15%) vs. 71 cases (65.14%)] were lower than those in the control group (P<0.05). Multivariate Logistic regression coefficient analysis showed that age (OR=1.158), years of education (OR=0.815), personal average monthly income (<3, 000 yuan) (OR=27.408) and SSRS score (OR=0.860) were independent influencing factors of treatment compliance of patients with multidrug-resistant pulmonary tuberculosis (P<0.05). The nomogram prediction model shows that the score of nomogram model increases by 9 points every time the patient′s age increases by 5 years; For every 2 years of education, the score of nomogram model will increase by 5 points; The nomogram score corresponding to an average monthly income of less than 3, 000 yuan is 27.5 points; For every 5 points of SSRS score reduction, the nomogram model increases by 13.5 points. The ROC curve shows that the AUC of the nomogram prediction model is 0.871 (95%CI: 0.811-0.931). The slope of calibration curve and Hosmer-Lemeshow goodness-of-fit test (χ2=7.347, P=0.500) showed that the nomogram model predicted the risk of treatment noncompliance in patients with multi-drug-resistant tuberculosis and the actual risk was in good agreement.

Conclusion

After 6 months of treatment, 54.73% of patients with multi-drug-resistant pulmonary tuberculosis turned negative. Age, years of education, average monthly income and low level of social support are the independent risk factors of patients′poor treatment compliance. The nomogram model of patients′poor treatment compliance formed by integrating these risk factors can be applied to predict the risk of patients′poor treatment compliance in clinic and provide value for improving the treatment effect of diseases.

表1 两组肺结核患者临床资料对比[n(%)]
表2 治疗依从性的多因素Logistic回归分析
图1 多重耐药性肺结核治疗依从性不良列线图预测模型
图2 列线图模型的ROC曲线
图3 列线图模型的校准曲线
1
Sossen B, Richards AS, Heinsohn T, et al. The natural history of untreated pulmonary tuberculosis in adults: a systematic review and meta-analysis[J]. Lancet Respir Med, 2023, 11(4): 367-379.
2
孟原竹,蒋国路,陈小兵. 肺结核合并侵袭性肺曲霉感染临床特征及危险因素分析[J/CD]. 中华肺部疾病杂志(电子版), 2023, 16(4): 541-543.
3
李 燕,倪婷婷. 免疫治疗时代下肺结核对肺癌发生、发展及治疗策略的影响[J]. 重庆医学2023, 52(2): 288-293.
4
汪悠悠. 多重耐药性肺结核患者临床护理中的护理风险与防范[J]. 饮食保健2020, 6(36): 172.
5
Xing W, Zhang R, Jiang W, et al. Adherence to multidrug resistant tuberculosis treatment and case management in Chongqing, China-A mixed method research study[J]. Infect Drug Resist, 2021, 14: 999-1012.
6
Alsayed S, Gunosewoyo H. Tuberculosis: Pathogenesis, current treatment regimens and new drug targets[J]. Int J Mol Sci, 2023, 24(6): 5202.
7
Marahatta SB, Yadav RK, Baral S, et al. Barriers to treatment compliance of directly observed treatment shortcourse among pulmunary tuberculosis patients[J]. J Nepal Health Res Counc, 2021, 19(3): 450-459.
8
徐月梅,叶菊花. 基于行为分阶段转变理论模型的护理对肺结核患者自护能力及治疗依从性的影响[J]. 中国医学创新2023, 20(14): 96-99.
9
王志杰. 肺结核巩固治疗期患者服药依从性的影响因素分析[J]. 中国保健营养2020, 30(25): 297.
10
谢春晖,郭雨微,林 旭,等. 非心脏手术老年患者术后谵妄风险预测模型的建立与验证[J]. 中华麻醉学杂志2021, 41(10): 1206-1211.
11
Lu Y, Hu B, Dai H, et al. Predictors of chronic postsurgical pain in elderly patients undergoing hip arthroplasty: A multi-center retrospective cohort study[J]. Int J Gen Med, 2021, 14: 7885-7894.
12
李蕙伊,董雪松. 急性敌草快中毒患者死亡风险列线图预测模型的构建和验证[J]. 中国医科大学学报202352(8): 673-679.
13
姜 琦,闵旭红,王尚虎,等. 食管癌放疗后发生食管狭窄的危险因素及其风险预测列线图模型的构建与验证[J/CD]. 消化肿瘤杂志(电子版), 2023, 15(2): 132-138.
14
中华人民共和国国家卫生和计划生育委员会. 肺结核诊断标准(WS 288-2017)[J/CD]. 新发传染病电子杂志2018, 3(1): 59-61.
15
Wu F, Sheng Y. Social support network, social support, self-efficacy, health-promoting behavior and healthy aging among older adults: A pathway analysis[J]. Arch Gerontol Geriatr, 2019, 85: 103934.
16
兰琨熠,张 清,沈悦好. GMAS、MMAS-8和SEAMS评估慢性病病人用药依从性效能的比较[J]. 护理研究2023, 37(13): 2322-2328.
17
巴桑才仁. 耐多药肺结核患者既往治疗情况对治疗效果的影响研究[J/CD]. 临床医药文献电子杂志2018, 5(23): 37.
18
郎 彤. 耐多药肺结核患者既往治疗情况对治疗效果的影响[J/CD]. 全科口腔医学杂志(电子版), 2019, 6(35):167.
19
Madeira DE Oliveira S, Altmayer S, Zanon M, et al. Predictors of noncompliance to pulmonary tuberculosis treatment: An insight from South America[J]. PLoS One, 2018, 13(9): e0202593.
20
蔡 穆,黎永华. 三亚市肺结核患者治疗依从性特点及其相关影响因素分析[J]. 临床肺科杂志2018, 23(8): 1502-1505.
21
王 可,左利君,郭立平,等. 互联网情境下肺结核病人自我健康管理能力的调查研究[J/CD]. 全科口腔医学杂志(电子版), 2019, 6(30): 187-188.
22
Ridho A, Alfian SD, Van Boven J, et al. Digital health technologies to improve medication adherence and treatment outcomes in patients with tuberculosis: Systematic review of randomized controlled trials[J]. J Med Internet Res, 2022, 24(2): e33062.
23
Parwati NM, Bakta IM, Januraga PP, et al. A health belief model-based motivational interviewing for medication adherence and treatment success in pulmonary tuberculosis patients[J]. Int J Environ Res Public Health, 2021, 18(24): 13238.
24
Abichou K, La Corte V, Nicolas S, et al. False memory in normal ageing: empirical data from the DRM paradigm and theoretical perspectives[J]. Geriatr Psychol Neuropsychiatr Vieil, 2020, 18(1): 65-75.
25
李 弘,古丽米拉·达列力汗,齐曼古力·吾守尔,等. 人类免疫缺陷病毒感染者/获得性免疫缺陷综合征合并肺结核患者抗病毒治疗服药依从性分析[J]. 中国医院用药评价与分析2021, 21(7): 872-875.
26
Mekonnen HS, Azagew AW. Non-adherence to anti-tuberculosis treatment, reasons and associated factors among TB patients attending at Gondar town health centers, Northwest Ethiopia[J]. BMC Res Notes, 2018, 11(1): 691.
27
黄佳佳,于新秀,王雪英,等. 文化教育程度及治疗依从性对养老社区2型糖尿病患者代谢控制的影响[J]. 中华糖尿病杂志2021, 13(2): 175-178.
28
林天凤. 影响肺结核患者规则服药依从性的相关因素及护理对策分析[J]. 中国社区医师2020, 36(1): 128-129.
29
郑沙沙,周红燕. 肺结核复诊依从性的影响因素[J]. 国际护理学杂志2023, 42(20): 3711-3714.
30
Veesa KS, John KR, Moonan PK, et al. Diagnostic pathways and direct medical costs incurred by new adult pulmonary tuberculosis patients prior to anti-tuberculosis treatment-Tamil Nadu, India[J]. PLoS One, 2018, 13(2): e0191591.
31
张 玲,林昌锋,孙 霞,等. 海南省三亚地区肺结核社会经济学情况调查及影响治愈因素分析[J]. 中国卫生统计2023, 40(5): 762-764.
32
Deshmukh RD, Dhande DJ, Sachdeva KS, et al. Social support a key factor for adherence to multidrug-resistant tuberculosis treatment[J]. Indian J Tuberc, 2018, 65(1): 41-47.
33
Florek AG, Wang CJ, Armstrong AW. Treatment preferences and treatment satisfaction among psoriasis patients: a systematic review[J]. Arch Dermatol Res, 2018, 310(4): 271-319.
34
刘晓莉,杜金霞,雷丽梅,等. 肺结核患者失眠与病耻感的相关性研究[J]. 重庆医学2023, 52(4): 629-632.
35
蒋 宇,李 月,刘忆冰,等. 青年初治肺结核患者病耻感现状及影响因素分析[J]. 中华现代护理杂志2023, 29(10): 1333-1337.
36
邱思冲,徐禄玉,李柳宁. 基于SEER数据库恶性脑膜瘤预后列线图的构建与验证[J]. 临床肿瘤学杂志2023, 28(1): 30-37.
37
张居洋,曹生亚,李文广,等. 基于流行病学资料及基因单核苷酸多态性的肺癌预测模型的建立[J]. 东南大学学报(医学版), 2019, 38(5): 854-858.
38
Xu K, Zhang L, Ren Z, et al. Development and validation of a nomogram to predict complications in patients undergoing simultaneous bilateral total knee arthroplasty: A retrospective study from two centers[J]. Front Surg, 2022, 9: 980477.
39
Li M, Yuan T, Li S, et al. Nomogram analysis of the influencing factors of diabetic foot in patients with diabetes mellitus[J]. Hormones (Athens), 2021, 20(2): 333-338.
40
Wu J, Zhang H, Li L, et al. A nomogram for predicting overall survival in patients with low-grade endometrial stromal sarcoma: A population-based analysis[J]. Cancer Commun (Lond), 2020, 40(7): 301-312.
[1] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[2] 李霞林, 贺芳. 产后出血风险评估和早期预警系统[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 498-503.
[3] 奚玲, 仝瀚文, 缪骥, 毛永欢, 沈晓菲, 杜峻峰, 刘晔. 基于肌少症构建的造口旁疝危险因素预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 48-51.
[4] 陈浩, 王萌. 胃印戒细胞癌的临床病理特征及治疗选择的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 108-111.
[5] 屈勤芳, 束方莲. 盆腔器官脱垂患者盆底重建手术后压力性尿失禁发生的影响因素及列线图预测模型构建[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 606-612.
[6] 张春玉, 陈海云, 肖忠萍, 罗琴, 潘运昌. 血清NT-proBNP 预测肺栓塞心脏功能障碍的临床分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 805-808.
[7] 张燕, 杨跃青, 邱峥. IgG 联合血清细胞因子对肺结核并发慢性肺曲霉菌病的诊断意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 809-812.
[8] 公宇, 廖媛, 尚梅. 肝细胞癌TACE术后复发影响因素及预测模型建立[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 818-824.
[9] 王贝贝, 崔振义, 王静, 王晗妍, 吕红芝, 李秀婷. 老年股骨粗隆间骨折患者术后贫血预测模型的构建与验证[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 355-362.
[10] 孙晗, 于冰, 武侠, 周熙朗. 基于循环肿瘤DNA 甲基化的结直肠癌筛查预测模型的构建与验证[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 500-506.
[11] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[12] 蔡晓雯, 李慧景, 丘婕, 杨翼帆, 吴素贤, 林玉彤, 何秋娜. 肝癌患者肝动脉化疗栓塞术后疼痛风险预测模型的构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 722-728.
[13] 王誉英, 刘世伟, 王睿, 曾娅玲, 涂禧慧, 张蒲蓉. 老年乳腺癌新辅助治疗病理完全缓解的预测因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 641-646.
[14] 董晟, 郎胜坤, 葛新, 孙少君, 薛明宇. 反向休克指数乘以格拉斯哥昏迷评分对老年严重创伤患者发生急性创伤性凝血功能障碍的预测价值[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 541-547.
[15] 黄圣楷, 许斌, 苏健, 孙龙. 海南省2010~2020年乙型肝炎流行趋势的时间序列分析及预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 555-561.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?