切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2024, Vol. 17 ›› Issue (02) : 242 -246. doi: 10.3877/cma.j.issn.1674-6902.2024.02.014

论著

采用AI的CT影像特征对肺结节良恶性鉴别的价值分析
解良婕1, 王剑2,(), 阳韬2,()   
  1. 1. 212013 镇江,江苏大学医学院
    2. 212002 镇江,江苏大学附属人民医院(镇江市第一人民医院)呼吸及危重症学科
  • 收稿日期:2023-11-13 出版日期:2024-04-25
  • 通信作者: 王剑, 阳韬
  • 基金资助:
    镇江市社会发展重大项目(SH2020047); 镇江市社会发展指导项目(FZ2019016)

Value analysis of CT image features based on AI in differential diagnosis of benign and malignant Pulmonary nodules

Liangjie Xie1, Jian Wang2,(), Tao Yang2,()   

  1. 1. School of Medicine, Jiangsu University, Zhenjiang 212013, China
    2. Department of Pulmonary and Critial Care Medicine, Affiliated People′s Hospital of Jiangsu University, Zhenjiang 212002, China
  • Received:2023-11-13 Published:2024-04-25
  • Corresponding author: Jian Wang, Tao Yang
引用本文:

解良婕, 王剑, 阳韬. 采用AI的CT影像特征对肺结节良恶性鉴别的价值分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 242-246.

Liangjie Xie, Jian Wang, Tao Yang. Value analysis of CT image features based on AI in differential diagnosis of benign and malignant Pulmonary nodules[J/OL]. Chinese Journal of Lung Diseases(Electronic Edition), 2024, 17(02): 242-246.

目的

采用人工智能(artificial intelligence, AI)的胸部低剂量计算机断层扫描(low-dose computed tomography, LDCT)影像特征分析肺结节良恶性的危险因素,建立肺结节良恶性预测模型。

方法

选择2021年1月至2022年12月我院收治的肺结节患者240例,收集临床资料,采用LDCT及AI鉴别肺结节,进行多因素分析,筛选肺结节良恶性的危险因素,建立二元Logistics回归模型,比较AI、影像医师及预测模型的诊断价值。

结果

最小CT值、直径R、毛刺征、血管穿行征、纯磨玻璃结节、部分实性结节是影响肺结节良恶性的危险因素(P<0.05)。二元Logistics回归模型为logit(P)=-2.905+(0.93×直径R)+(1.572×血管穿行)+(1.346×毛刺征)+(1.755×纯磨玻璃结节)+(2.25×部分实性结节)-(0.001×最小CT值),AI、影像医师及预测模型鉴别的灵敏度分别为89.86%、81.88%、73.19%,特异度分别为32.35%、55.88%、73.53%,阳性似然比分别为1.328、1.856、2.762,阴性似然比分别为0.314、0.324、0.365,曲线下面积(area under the curve, AUC)分别为0.611、0.689、0.789。

结论

联合肺结节形态特征及基于AI的CT定量参数回归模型对肺结节良恶性的诊断价值优于AI及影像医师,具有临床意义。

Objective

To analyze the risk factors of benign and malignant lung nodules and establish a predictive model by the low dose computed tomography (LDCT) images and artificial intelligence (AI).

Methods

The clinical data of 240 patients, who were admitted to our hospital from January 2021 to December 2022 and had definitive pathological results, were retrospectively analyzed. Univariate and multivariate analyses were performed to identify the risk factors associated with benign and malignant pulmonary nodules. A binary logistic regression model was established, and the diagnostic efficiency of AI, radiologists, and prediction models was evaluated.

Results

Risk factors for distinguishing benign and malignant pulmonary nodules included minimum CT value, diameter R, spiculation sign, vascular penetration sign, pure ground glass nodules, and partially solid nodules(P<0.05). The regression model constructed was logit(P)=-2.905+ (0.93×diameter R)+ (1.572×vascular penetration)+ (1.346×spiculation sign)+ (1.755×pure ground glass nodules)+ (2.25×partially solid nodules)-(0.001×minimum CT value). The sensitivity of AI, radiologists, and the prediction model was 89.86%, 81.88%, and 73.19% respectively, with corresponding specificities of 32.35%, 55.88%, and 73.53%. The positive likelihood ratios was 1.328, 1.856, and 2.762, and the negative likelihood ratios are 0.314, 0.324, and 0.365. The AUC values was 0.611, 0.689, and 0.789 respectively.

Conclusion

The diagnostic performance of the regression model, which combines pulmonary nodule morphological features and AI-based CT quantitative parameters, in distinguishing between benign and malignant pulmonary nodules is moderate, but superior to that of AI alone or individual radiologists.

表1 肺结节良恶性单因素分析[(±s),n(%)]
表2 肺结节良恶性Logistic多因素分析
表3 AI、影像学及预测模型的肺结节诊断比较(%)
1
高嘉营,金发光. 肺癌自身抗体在肺癌诊断中的研究进展[J/CD]. 中华肺部疾病杂志(电子版), 2023, 16(5): 739-741.
2
Oudkerk M, Liu S, Heuvelmans MA, et al. Lung cancer LDCT screening and mortality reduction-evidence, pitfalls and future perspectives[J]. Nat Rev Clin Oncol, 2021, 18(3): 135-151.
3
Bach PB, Mirkin JN, Oliver TK, et al. Benefits and harms of CT screening for lung cancer: a systematic review[J]. JAMA, 2012, 307(22): 2418-2429.
4
Jonas DE, Reuland DS, Reddy SM, et al. Screening for lung cancer with low-dose computed tomography: Updated evidence report and systematic review for the US preventive services task force[J]. JAMA, 2021, 325(10): 971-987.
5
Mcwilliams A, Tammemagi MC, Mayo JR, et al. Probability of cancer in pulmonary nodules detected on first screening CT[J]. N Engl J Med, 2013, 369(10): 910-919.
6
杨 丽,钱桂生. 肺结节临床精准诊断的新理念[J/CD]. 中华肺部疾病杂志(电子版), 2022, 15(1): 1-5.
7
Hawkins S, Wang H, Liu Y, et al. Predicting malignant nodules from screening CT scans[J]. J Thorac Oncol, 2016, 11(12): 2120-2128.
8
Zhao W, Yang J, Sun Y, et al. 3D deep learning from CT scans predicts tumor invasiveness of subcentimeter pulmonary adenocarcinomas[J]. Cancer Res, 2018, 78(24): 6881-6889.
9
Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography[J]. Nature Medicine, 2019, 25(6): 954-961.
10
Venkadesh KV, Setio AaA, Schreuder A, et al. Deep learning for malignancy risk estimation of pulmonary nodules detected at low-dose screening CT[J]. Radiology, 2021, 300(2): 438-447.
11
吴阶平医学基金会模拟医学部胸外科专委会. 人工智能在肺结节诊治中的应用专家共识[J]. 中国肺癌杂志2022, 25(4): 219-225.
12
Pei Q, Luo Y, Chen Y, et al. Artificial intelligence in clinical applications for lung cancer: diagnosis, treatment and prognosis[J]. Clin Chem Lab Med, 2022, 60(12): 1974-1983.
13
中华医学会呼吸病学分会肺癌学组,中国肺癌防治联盟专家组. 肺结节诊治中国专家共识(2018年版)[J]. 中华结核和呼吸杂志2018, 41(10): 763-771.
14
Li C, Lei S, Ding L, et al. Global burden and trends of lung cancer incidence and mortality[J]. Chin Med J (Engl), 2023, 136(13): 1583-1590.
15
Seijo L M, Peled N, Ajona D, et al. Biomarkers in lung cancer screening: Achievements, promises, and challenges[J]. J Thor Oncol, 2019, 14(3): 343-357.
16
Chabon JJ, Hamilton EG, Kurtz DM, et al. Integrating genomic features for non-invasive early lung cancer detection[J]. Nature, 2020, 580(7802): 245-251.
17
Chamberlin J, Kocher MR, Waltz J, et al. Automated detection of lung nodules and coronary artery calcium using artificial intelligence on low-dose CT scans for lung cancer screening: accuracy and prognostic value[J]. BMC Med, 2021, 19(1): 55.
18
Wang X, Gao M, Xie J, et al. Development, validation, and comparison of image-based, clinical feature-based and fusion artificial intelligence diagnostic models in differentiating benign and malignant pulmonary ground-glass nodules[J]. Front Oncol, 2022, 12: 892890.
19
Yoshida K, Gowers KHC, Lee-Six H, et al. Tobacco smoking and somatic mutations in human bronchial epithelium[J]. Nature, 2020, 578(7794): 266-272.
20
Daniel M, Keefe FJ, Lyna P, et al. Persistent smoking after a diagnosis of lung cancer is associated with higher reported pain levels[J]. J Pain, 2009, 10(3): 323-328.
21
Chen WQ, Zhang SW, Zou XN, et al. Cancer incidence and mortality in china, 2006[J]. Chin J Cancer Res, 2011, 23(1): 3-9.
22
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33.
23
Liang ZR, Ye M, Lv FJ, et al. Differential diagnosis of benign and malignant patchy ground-glass opacity by thin-section computed tomography[J]. BMC Cancer, 2022, 22(1): 1206.
24
Ragavan M, Patel MI. The evolving landscape of sex-based differences in lung cancer: a distinct disease in women[J]. Eur Respir Rev, 2022, 31(163). 210100.
25
Macrosty CR, Rivera MP. Lung cancer in women: A modern epidemic[J]. Clin Chest Med, 2020, 41(1): 53-65.
26
Li X, Zhang W, Yu Y, et al. CT features and quantitative analysis of subsolid nodule lung adenocarcinoma for pathological classification prediction[J]. BMC Cancer, 2020, 20(1): 60.
27
Chu ZG, Li WJ, Fu BJ, et al. CT Characteristics for predicting invasiveness in pulmonary pure ground-glass nodules[J]. Am J Roentgenol, 2020, 215(2): 351-358.
28
Jacob M, Romano J, Ara Jo D, et al. Predicting lung nodules malignancy[J]. Pulmonol, 2022, 28(6): 454-460.
29
Gao Y, Chen Y, Jiang Y, et al. Artificial intelligence algorithm-based feature extraction of computed tomography images and analysis of benign and malignant pulmonary nodules[J]. Computat Intell Neurosci, 2022, 2022: 5762623.
30
白 静. 球形肺炎的CT诊断价值与鉴别诊断分析[J]. 中国医疗器械信息2019, 25(20): 1-2+188.
31
唐 志,周建国. 非实性肺结节CT影像收缩力表现与侵袭性对照分析[J]. 医学影像学杂志2023, 33(3): 431-434.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[3] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[4] 奚玲, 仝瀚文, 缪骥, 毛永欢, 沈晓菲, 杜峻峰, 刘晔. 基于肌少症构建的造口旁疝危险因素预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 48-51.
[5] 贺斌, 马晋峰. 胃癌脾门淋巴结转移危险因素[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 694-699.
[6] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[7] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[8] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[9] 屈勤芳, 束方莲. 盆腔器官脱垂患者盆底重建手术后压力性尿失禁发生的影响因素及列线图预测模型构建[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 606-612.
[10] 林凯, 潘勇, 赵高平, 杨春. 造口还纳术后切口疝的危险因素分析与预防策略[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 634-638.
[11] 杨闯, 马雪. 腹壁疝术后感染的危险因素分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 693-696.
[12] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[13] 蔡晓雯, 李慧景, 丘婕, 杨翼帆, 吴素贤, 林玉彤, 何秋娜. 肝癌患者肝动脉化疗栓塞术后疼痛风险预测模型的构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 722-728.
[14] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
[15] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?