切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2025, Vol. 18 ›› Issue (02) : 226 -230. doi: 10.3877/cma.j.issn.1674-6902.2025.02.004

论著

急性呼吸窘迫综合征患者机械通气动脉血二氧化碳分压变异率与预后风险相关性
张鹏1, 史慢慢1, 马辉1, 吴佼佼2, 赵暾2, 张颖彬2,()   
  1. 1. 100144 北京,首都医科大学附属北京康复医院急救医学中心
    2. 100144 北京,首都医科大学附属北京康复医院神经康复中心
  • 收稿日期:2025-03-19 出版日期:2025-04-25
  • 通信作者: 张颖彬

Correlation between the variability of arterial partial pressure of carbon dioxide (PaCO2) and the prognostic risk in patients with acute respiratory distress syndrome (ARDS) during mechanical ventilation

Peng Zhang1, Manman Shi1, Hui Ma1, Jiaojiao Wu2, Tun Zhao2, Yingbin Zhang2,()   

  1. 1. Emergency Medical Center,Beijing Rehabilitation Hospital Affiliated to Capital Medical University,Beijing 100144,China
    2. Neurological Rehabilitation Center,Beijing Rehabilitation Hospital Affiliated to Capital Medical University,Beijing 100144,China
  • Received:2025-03-19 Published:2025-04-25
  • Corresponding author: Yingbin Zhang
引用本文:

张鹏, 史慢慢, 马辉, 吴佼佼, 赵暾, 张颖彬. 急性呼吸窘迫综合征患者机械通气动脉血二氧化碳分压变异率与预后风险相关性[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 226-230.

Peng Zhang, Manman Shi, Hui Ma, Jiaojiao Wu, Tun Zhao, Yingbin Zhang. Correlation between the variability of arterial partial pressure of carbon dioxide (PaCO2) and the prognostic risk in patients with acute respiratory distress syndrome (ARDS) during mechanical ventilation[J/OL]. Chinese Journal of Lung Diseases(Electronic Edition), 2025, 18(02): 226-230.

目的

分析急性呼吸窘迫综合征(acute respiratory distress syndrome,ARDS)患者机械通气动脉血二氧化碳分压(partial pressure of carbon dioxide,PaCO2)变异率与不良预后风险的相关性。

方法

选择2020 年1 月至2024 年8 月我院收治的56 例经机械通气治疗ARDS 患者为对象,经救治无效死亡者20 例为观察组,救治后存活者36 例为对照组。 收集患者临床结果及实验室检查指标,记录机械通气过程中PaCO2 变化情况,以机械通气后救治无效全因死亡率为主要临床结局,通过Cox 回归分析PaCO2变异率与不良预后风险的相关性。

结果

观察组序贯器官衰竭评分(sequential organ failure assessment,SOFA)(9.92±2.45)分、急性生理与慢性健康评分(acute physidogy and chronic health evaluation Ⅱ,APACHE Ⅱ)(24.84±5.63)分及PaO2/FiO2(191.38±22.89)较对照组(8.41±2.19)分、(21.35±4.84)分及(206.97±20.53)差异有统计学意义(P<0.05)。 两组机械通气时及1 d 后PaCO2 水平差异无统计学意义(P>0.05),观察组通气2 d、3 d 后PaCO2 水平(40.09±1.77)mmHg、(44.21±1.53)mmHg 高于对照组(38.26±1.18)mmHg、(41.04±1.05)mmHg(P<0.05),患者PaCO2 变异率呈下降趋势,观察组PaCO2 变异率高于对照组(P<0.05)。 Cox 回归分析显示,SOFA 评分(HR=1.197,95%CI:1.002~1.429)和PaCO2 变异率(HR=1.315,95%CI:1.141~1.514)与ARDS 不良预后风险相关(P<0.05),校正混杂因素,PaCO2 变异率(HR=1.323,95%CI:1.153~1.518)与ARDS 不良预后风险相关(P<0.05)。

结论

ARDS 患者机械通气中PaCO2 持续升高与死亡风险增加有关,PaCO2 变异率增加,不良预后风险越大,监测PaCO2 变异率对改善ARDS 预后具有意义。

Objective

To analyze the correlation between the variability of arterial partial pressure of carbon dioxide (PaCO2) and the prognostic risk in patients with acute respiratory distress syndrome (ARDS)during mechanical ventilation.

Methods

A total of 56 ARDS patients treated with mechanical ventilation in our hospital from January 2020 to August 2024 were selected as the study subjects. Twenty deceased cases were in the observation group and 36 survivors were in the control group. Demographic data,clinical outcomes,and laboratory indicators were collected. Changes in PaCO2 during mechanical ventilation were recorded,with 28-day all-cause mortality as the primary clinical outcome. Cox regression analysis was used to assess the correlation between PaCO2 variability and adverse prognosis.

Results

The observation group had,sequential organ failure assessment (SOFA) score of (9.92±2.45),acute physiology and chronic health evaluation Ⅱ(APACHE Ⅱ) score of (24.84±5.63),and PaO2/FiO2 of (191.38±22.89),which were significantly different from the control group,SOFA score(8.41±2.19),APACHE Ⅱscore(21.35±4.84),PaO2/FiO2(206.97±20.53)(P<0.05). No significant differences in PaCO2 levels were observed between the two groups during mechanical ventilation and at 1 day post-ventilation (P>0.05). However,the observation group showed higher PaCO2 levels at 2 days (40.09±1.77 )mmHg and 3 days (44.21±1.53) mmHg post-ventilation compared to the control group (38.26±1.18)mmHg and (41.04±1.05 )mmHg,respectively; P<0.05). PaCO2 variability decreased over time,with the observation group exhibiting higher variability than the control group(P<0.05). Cox regression analysis revealed that SOFA score (HR=1.197,95%CI:1.002~1.429) and PaCO2 variability (HR=1.315,95%CI: 1.141~1.514) were associated with adverse prognosis in ARDS (P<0.05).After adjusting for confounders,PaCO2 variability remained significantly correlated with adverse prognosis (HR=1.323,95%CI: 1.153 ~1.518; P<0.05).

Conclusion

Persistent elevation of PaCO2 during mechanical ventilation in ARDS patients is associated with increased mortality risk. Higher PaCO2 variability correlates with greater adverse prognosis risk. Monitoring PaCO2 variability may help reduce prognostic risk in ARDS.

表1 两组ARDS 患者临床资料结果比较
表2 两组ARDS 患者PaCO2 水平比较[mmHg,()]
表3 两组ARDS 患者PaCO2 变异率比较[(%),()]
表4 ARDS 患者不良预后风险的Cox 回归分析
1
Huang X,Zhang R,Fan G,et al. Incidence and outcomes of acute respiratory distress syndrome in intensive care units of mainland China: a multicentre prospective longitudinal study[J]. Crit Care,2020,24(1): 515.
2
Santa Cruz R,Rojas JI,Nervi R,et al. High versus low positive end-expiratory pressure (PEEP) levels for mechanically ventilated adult patients with acute lung injury and acute respiratory distress syndrome[J]. Cochrane Database Syst Rev,2013,2013(6):CD009098.
3
Liang H,Deng Q,Ye W,et al. Prone position ventilation-induced oxygenation improvement as a valuable predictor of survival in patients with acute respiratory distress syndrome: a retrospective observational study[J]. BMC Pulm Med,2024,24(1): 575.
4
Slobod D,Damia A,Leali M,et al. Pathophysiology and clinical meaning of ventilation-perfusion mismatch in the acute respiratory distress syndrome[J]. Biology (Basel),2022,12(1): 67.
5
Madotto F,Rezoagli E,McNicholas BA,et al. Patterns and impact of arterial CO(2) management in patients with acute respiratory distress syndrome: Insights from the LUNG SAFE study[J]. Chest,2020,158(5): 1967-1982.
6
Chen T,Asher S,Apruzzese P,et al. Hypercapnia during transcatheter aortic valve replacement under monitored anaesthesia care: a retrospective cohort study [J]. Open Heart,2024,11 (2):e002801.
7
Maamar A,Delamaire F,Reizine F,et al. Impact of arterial CO(2)retention in patients with moderate or severe ARDS[J]. Respir Care,2023,68(5): 582-591.
8
Pan A,Song X,Huang H. Bayesian analysis for partly linear Cox model with measurement error and time-varying covariate effect[J].Stat Med,2022,41(23): 4666-4681.
9
Schmitt J,Danguy Des Deserts M,Le Roux A,et al. Using PaCO2 as a sensitive information for detection of respiratory deterioration in severe COVID-19 patients[J]. Anaesth Crit Care Pain Med,2022,41(2): 101019.
10
Park J,Lee HY,Lee J,et al.Effect of prone positioning on oxygenation and static respiratory system compliance in COVID-19 ARDS vs.non-COVID ARDS[J]. Respir Res,2021,22(1): 220.
11
Ranieri VM,Rubenfeld GD,Thompson BT,et al. Acute respiratory distress syndrome: the Berlin Definition[J]. JAMA,2012,307(23): 2526-2533.
12
Moreno R,Rhodes A,Piquilloud L,et al.The sequential organ failure assessment (SOFA) score:has the time come for an update?[J]. Crit Care,2023,27(1): 15.
13
Asmarawati TP,Suryantoro SD,Rosyid AN,et al. Predictive value of sequential organ failure assessment,quick sequential organ failure assessment,acute physiology and chronic health evaluation Ⅱ,and new early warning signs scores estimate mortality of COVID-19 patients requiring intensive care unit[J]. Indian J Crit Care Med,2022,26(4): 464-471.
14
Zhang X,Ma N,Lin Q,et al. Body roundness index and all-cause mortality among US adults[J]. JAMA Netw Open,2024,7(6):e2415051.
15
Schmitt J,Danguy Des Deserts M,Le Roux A,et al. Using PaCO2 as a sensitive information for detection of respiratory deterioration in severe COVID-19 patients[J]. Anaesth Crit Care Pain Med,2022,41(2): 101019.
16
Morales-Quinteros L,Neto AS,Artigas A,et al. Dead space estimates may not be independently associated with 28-day mortality in COVID-19 ARDS[J]. Crit Care,2021,25(1): 171.
17
Jayasimhan D,Chieng J,Kolbe J,et al. Dead-space ventilation indices and mortality in acute respiratory distress syndrome: a systematic review and Meta-analysis[J]. Crit Care Med,2023,51(10): 1363-1372.
18
Fusina F,Albani F,Bertelli M,et al. Corrected minute ventilation is associated with mortality in ARDS caused by COVID-19[J].Respir Care,2021,66(4): 619-625.
19
Lazzeri C,Bonizzoli M,Batacchi S,et al. Persistent right ventricle dilatation in SARS-CoV-2-related acute respiratory distress syndrome on extracorporeal membrane oxygenation support[J]. J Cardiothorac Vasc Anesth,2022,36(7): 1956-1961.
20
James OP,Stacey B,Hopkins L,et al. Personal protective equipment impairs pulmonary gas exchange causing systemic hypercapniahypoxaemia and cerebral hyperperfusion-induced cephalalgia[J]. Br J Surg,2021,108(5): e205-e206.
21
Chen Q,Hu X,Cao L,et al. Effect of early mechanical ventilation on the expression of inflammatory factors and prognosis in patients with severe traumatic brain injury[J]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue,2021,33(6): 727-730.
22
Brusatori S,Zinnato C,Busana M,et al. High-versus low-flow extracorporeal respiratory support in experimental hypoxemic acute lung injury[J]. Am J Respir Crit Care Med,2023,207(9):1183-1193.
23
Monteiro A,Vangala S,Wick KD,et al. The prognostic value of early measures of the ventilatory ratio in the ARDS ROSE trial[J].Crit Care,2022,26(1): 297.
24
Zhang R,Chen H,Teng R,et al. Association between the timevarying arterial carbon dioxide pressure and 28-day mortality in mechanically ventilated patients with acute respiratory distress syndrome[J]. BMC Pulm Med,2023,23(1): 129.
25
刘灵芝,张群群,王 琪,等. 腹内压与重症肺炎机械通气患儿呼吸功能的关系及预后预测价值研究[J]. 中华实用儿科临床杂志,2024,39(12): 931-935.
26
Li B,Yang L,Zheng J,et al. Prone positioning in extubated patients with hypoxemic respiratory failure after cardiac surgery: A retrospective study[J]. Heart Lung,2022,56: 24-28.
27
Vaporidi K,Akoumianaki E,Telias I,et al.Respiratory drive in criticallyⅢpatients. pathophysiology and clinical implications[J]. Am J Respir Crit Care Med,2020,201(1): 20-32.
28
Beloncle F,Studer A,Seegers V,et al. Longitudinal changes in compliance,oxygenation and ventilatory ratio in COVID-19 versus non-COVID-19 pulmonary acute respiratory distress syndrome[J].Crit Care,2021,25(1): 248.
29
Bos L,Sjoding M,Sinha P,et al.Longitudinal respiratory subphenotypes in patients with COVID-19-related acute respiratory distress syndrome: results from three observational cohorts [J]. Lancet Respir Med,2021,9(12): 1377-1386.
[1] 江雅婷, 刘林峰, 沈辰曦, 陈奔, 刘婷, 龚裕强. 组织相关巨噬素3 保护肺血管内皮糖萼治疗急性呼吸窘迫综合征的机制研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 353-362.
[2] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[3] 陈丽, 郭俊氚, 马红梅, 刘遵季. 死腔分数对急性呼吸窘迫综合征预后预测意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 942-947.
[4] 罗宸婧, 盛芳芳, 张静, 王关嵩, 秦蘅, 顾鹏. 以全球视角对中国慢性阻塞性肺疾病负担及未来趋势分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 855-860.
[5] 袁丽, 钱际银, 张云, 张晶, 高霏. 急性呼吸窘迫综合征患者体外膜氧合救治的临床分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 1013-1016.
[6] 桂真, 蒲红兵, 张蓓, 王钰, 蔡嘉敏, 彭诗卉. 嗜酸性粒细胞水平与支气管扩张吸入性糖皮质激素疗效的相关性[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 1020-1023.
[7] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[8] 袁雪燕, 邱海波, 刘玲. 重症呼吸:2024年度进展与展望[J/OL]. 中华重症医学电子杂志, 2025, 11(01): 22-26.
[9] 王谷宜, 黎家琦, 钟燕军, 余波, 吴晨方, 董海云, 徐敏, 王花芹, 唐莉, 朱艳艳, 李金秀, 吕奔. 基于智慧ICU云平台的ARDS集束化管理对ARDS患者临床结局的影响[J/OL]. 中华重症医学电子杂志, 2025, 11(01): 72-77.
[10] 倪韫晖, 袁雪燕, 黄丽丽, 杨毅, 邱海波. 呼吸驱动在保护性通气策略中的研究进展[J/OL]. 中华重症医学电子杂志, 2025, 11(01): 91-94.
[11] 王晓霞, 乌丹, 张江英, 乌雅罕, 郝颖楠, 斯日古楞. 《2023 年美国胸科学会关于成人急性呼吸窘迫综合征患者管理的临床实践指南更新》解读[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 338-343.
[12] 杨东星, 沈鹏, 赵慧颖. 免疫球蛋白联合依库珠单抗治疗GBS 并发重度ARDS 患者一例[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 404-408.
[13] 陈惠英, 邱敏珊, 邵汉权. 脓毒症诱发肠黏膜屏障功能损伤的风险因素模型构建与应用效果[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 448-452.
[14] 王翔, 冯辉斌. 肺部超声在急性呼吸窘迫综合征表型中的应用进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(12): 1155-1160.
[15] 唐瑶瑶, 郭莹, 秦红霄, 于晶晶, 张义璇, 方明星, 孟稳利. HVHF联合CHVHF对脓毒症相关ARDS患者炎症反应和呼吸功能的影响[J/OL]. 中华临床医师杂志(电子版), 2024, 18(12): 1097-1103.
阅读次数
全文


摘要