切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2025, Vol. 18 ›› Issue (05) : 833 -836. doi: 10.3877/cma.j.issn.1674-6902.2025.05.033

综述

线粒体自噬调控特发性肺纤维化发生发展的研究进展
程玉红, 杨雪, 李春飞, 代文静()   
  1. 610000 成都,成都医学院第一附属医院呼吸与危重症医学科·老年呼吸病四川省高校重点实验室
  • 收稿日期:2025-03-27 出版日期:2025-10-25
  • 通信作者: 代文静
  • 基金资助:
    四川省科技计划项目(2021YJ0470); 2025年四川省省级临床重点专科建设项目

Research progress on the role of mitophagy in regulating the occurrence and development of idiopathic pulmonary fibrosis

Yuhong Cheng, Xue Yang, Chunfei Li   

  • Received:2025-03-27 Published:2025-10-25
引用本文:

程玉红, 杨雪, 李春飞, 代文静. 线粒体自噬调控特发性肺纤维化发生发展的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 833-836.

Yuhong Cheng, Xue Yang, Chunfei Li. Research progress on the role of mitophagy in regulating the occurrence and development of idiopathic pulmonary fibrosis[J/OL]. Chinese Journal of Lung Diseases(Electronic Edition), 2025, 18(05): 833-836.

特发性肺纤维化(idiopathic pulmonary fibrosis, IPF)是一种慢性进行性肺部疾病,目前尚无根治方法。线粒体自噬作为维持细胞内稳态的重要机制,在IPF的发生发展中发挥关键作用。本文综述了线粒体自噬通过PINK1/Parkin等通路调控IPF中氧化应激、炎症反应、肺泡上皮细胞损伤、成纤维细胞活化及上皮-间质转化等过程的机制,探讨了吡非尼酮、中医药等通过调节线粒体自噬干预IPF的潜在治疗策略。未来研究应探索线粒体自噬的调控机制,为IPF治疗提供新靶点。

1
胡莉娟,刘若雨,周允,等. 基于检验指标构建多参数模型在特发性肺纤维化临床评估中的应用[J]. 中华检验医学杂志2024, 47(10): 1139-1151.
2
吴逢波,孙闻续,蒋艾豆,等. 吡非尼酮治疗特发性肺纤维化的快速卫生技术评估[J]. 医药导报2021, 40(4): 515-519.
3
许银姬,金蕊,苗姝. 吡非尼酮联合醋酸泼尼松治疗特发性肺纤维化的临床疗效[J]. 保健医学研究与实践2022, 19(2): 6-8, 27.
4
杨怡恬,叶威龙,姚卫民. 纤维化间质性肺疾病中咳嗽的流行病学及预后意义[J]. 中华结核和呼吸杂志2024, 47(10): 990-995.
5
徐义峰,柯诗文,肖航,等. 特发性肺纤维化中基底膜相关标志物探索及治疗药物预测[J]. 医药导报2024, 43(8): 1338-1346.
6
邱凌霄,王创业,卿斌,等. 基于转录组学筛选特发性肺纤维化的枢纽基因和信号通路[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(2): 212-217.
7
León-Román F, Valenzuela C, Molina-Molina M. Idiopathic pulmonary fibrosis[J]. Med Clin (Barc), 2022, 159(4): 189-194.
8
秦喜竹,李慧雅,陈海丽. 有氧抗阻肺康复疗法对激素治疗特发性肺纤维化患者临床疗效及相关炎症介质表达的影响[J]. 临床和实验医学杂志2023, 22(5): 477-481.
9
姜福富,覃纲,李嘉燕,等. 特发性肺纤维化急性加重期患者NLRP3炎症小体、炎症因子、蛋白酶表达水平及其临床价值[J]. 中国老年学杂志2022, 42(20): 4974-4977.
10
Wang L, Zhu M, Li Y, et al. Serum proteomics identifies biomarkers associated with the pathogenesis of idiopathic pulmonary fibrosis[J]. Mol Cell Proteomics, 2023, 22(4): 100524.
11
Zhang T, Liu Q, Gao W, et al. The multifaceted regulation of mitophagy by endogenous metabolites[J]. Autophagy, 2022, 18(6): 1216-1239.
12
Samuvel DJ, Li L, Krishnasamy Y, et al. Mitochondrial depolarization after acute ethanol treatment drives mitophagy in living mice[J]. Autophagy, 2022, 18(11): 2671-2685.
13
贺宏健,韦兰成,石倩倩,等. 锰诱导BV2细胞炎症活化与线粒体自噬有关[J]. 广西医科大学学报2024, 41(7): 989-995.
14
Hui S, George J, Kapadia M, et al. Mitophagy upregulation occurs early in the neurodegenerative process mediated by α-synuclein[J]. Mol Neurobiol, 2024, 61(11): 9032-9042.
15
吴沛玲,娄月妍,张洪艳,等. 线粒体相关基因在特发性肺纤维化中的分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(2): 178-184.
16
汤友静,牛玉娜,王辉. Pink1/Parkin介导的线粒体自噬分子机制[J]. 中国细胞生物学学报2017, 39(7): 939-946.
17
Sun Y, Cao Y, Wan H, et al. A mitophagy sensor PPTC7 controls BNIP3 and NIX degradation to regulate mitochondrial mass[J]. Mol Cell, 2024, 84(2): 327-344.
18
Li Y, Chen H, Xie X, et al. PINK1-mediated mitophagy promotes oxidative phosphorylation and redox homeostasis to induce drug-tolerant persister cancer cells[J]. Cancer Res, 2023, 83(3): 398-413.
19
Zhao G, Zhang T, Li J, et al. Parkin-mediated mitophagy is a potential treatment for oxaliplatin-induced peripheral neuropathy[J]. Am J Physiol Cell Physiol, 2024, 326(1): C214-C228.
20
Gao A, Wang M, Tang X, et al. NDP52 SUMOylation contributes to low-dose X-rays-induced cardiac hypertrophy through PINK1/Parkin-mediated mitophagy via MUL1/SUMO2 signalling[J]. J Cell Physiol, 2024, 239(1): 79-96.
21
Choi GE, Lee HJ, Chae CW, et al. BNIP3L/NIX-mediated mitophagy protects against glucocorticoid-induced synapse defects[J]. Nat Commun, 2021, 12(1): 487.
22
Liu L, Li Y, Wang J, et al. Mitophagy receptor FUNDC1 is regulated by PGC-1α/NRF1 to fine tune mitochondrial homeostasis[J]. EMBO Rep, 2021, 22(3): e50629.
23
Cameli P, Carleo A, Bergantini L, et al. Oxidant/Antioxidant Disequilibrium in Idiopathic Pulmonary Fibrosis Pathogenesis[J]. Inflammation, 2020, 43(1): 1-7.
24
Pan L, Cheng Y, Yang W, et al. Nintedanib ameliorates bleomycin-induced pulmonary fibrosis, inflammation, apoptosis, and oxidative stress by modulating PI3K/Akt/mTOR pathway in mice[J]. Inflammation, 2023, 46(4): 1531-1542.
25
Meng Y, Pan M, Zheng B, et al. Autophagy attenuates angiotensin Ⅱ-induced pulmonary fibrosis by inhibiting redox imbalance-mediated nod-like receptor family pyrin domain containing 3 inflammasome activation[J]. Antioxid Redox Signal, 2019, 30(4): 520-541.
26
Rimessi A, Pozzato C, Carparelli L, et al. Pharmacological modulation of mitochondrial calcium uniporter controls lung inflammation in cystic fibrosis[J]. Sci Adv, 2020, 6(19): eaax9093.
27
Tian Z, Yao N, Wang F, Ruan L. Thymosin β4 suppresses LPS-induced murine lung fibrosis by attenuating oxidative injury and alleviating inflammation[J]. Inflammation, 2022, 45(1): 59-73.
28
杜欣倩,崔烨. 肺泡上皮细胞和巨噬细胞在特发性肺纤维化中的相互作用[J]. 微生物学免疫学进展2023, 51(5): 61-67.
29
Chung KP, Cheng CN, Chen YJ, et al. Alveolar epithelial cells mitigate neutrophilic inflammation in lung injury through regulating mitochondrial fatty acid oxidation[J]. Nat Commun, 2024, 15(1): 7241.
30
Patel AS, Song JW, Chu SG, et al. Epithelial cell mitochondrial dysfunction and PINK1 are induced by transforming growth factor-beta1 in pulmonary fibrosis[J]. PLoS One, 2015, 10(3): e0121246.
31
Bueno M, Lai YC, Romero Y, et al. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis[J]. J Clin Invest, 2015, 125(2): 521-38.
32
Guan R, Yuan L, Li J, et al. Bone morphogenetic protein 4 inhibits pulmonary fibrosis by modulating cellular senescence and mitophagy in lung fibroblasts[J]. Eur Respir J, 2022, 60(6): 2102307.
33
Wang W, Zhang Y, Huang W, et al. Alamandine/MrgD axis prevents TGF-β1-mediated fibroblast activation via regulation of aerobic glycolysis and mitophagy[J]. J Transl Med, 2023, 21(1): 24.
34
Sosulski ML, Gongora R, Danchuk S, et al. Deregulation of selective autophagy during aging and pulmonary fibrosis: the role of TGFβ1[J]. Aging Cell, 2015, 14(5): 774-83.
35
Santarelli R, Arteni AMB, Gilardini Montani MS, et al. KSHV dysregulates bulk macroautophagy, mitophagy and UPR to promote endothelial to mesenchymal transition and CCL2 release, key events in viral-driven sarcomagenesis[J]. Int J Cancer, 2020, 147(12): 3500-3510.
36
Xu M, Wang X, Xu L, et al. Chronic lung inflammation and pulmonary fibrosis after multiple intranasal instillation of PM2.5in mice[J]. Environ Toxicol, 2021, 36(7): 1434-1446.
37
Zhong WJ, Zhang J, Duan JX, et al. TREM-1 triggers necroptosis of macrophages through mTOR-dependent mitochondrial fission during acute lung injury[J]. J Transl Med, 2023, 21(1): 179.
38
Zhu L, Fu X, Chen X, et al. M2 macrophages induce EMT through the TGF-β/Smad2 signaling pathway[J]. Cell Biol Int, 2017, 41(9): 960-968.
39
Larson-Casey JL, Deshane JS, Ryan AJ, et al. Macrophage Akt1 kinase-mediated mitophagy modulates apoptosis resistance and pulmonary fibrosis[J]. Immunity, 2016, 44(3): 582-596.
40
Vancheri C, Kreuter M, Richeldi L, et al. Nintedanib with add-on pirfenidone in idiopathic pulmonary fibrosis. Results of the INJOURNEY trial[J]. Am J Respir Crit Care Med, 2018, 197(3): 356-363.
41
Kurita Y, Araya J, Minagawa S, et al. Pirfenidone inhibits myofibroblast differentiation and lung fibrosis development during insufficient mitophagy[J]. Respir Res, 2017, 18(1): 114.
42
Yu G, Tzouvelekis A, Wang R, et al. Thyroid hormone inhibits lung fibrosis in mice by improving epithelial mitochondrial function[J]. Nat Med, 2018, 24(1): 39-49.
43
孙春斌,应艺,侯迥,等. 三七总皂苷抑制PI3 K/AKT/mTOR信号通路激活自噬缓解小鼠肺纤维化的实验研究[J]. 时珍国医国药2020, 31(12): 2872-2876.
44
张兴,张炜,蔡淦. 扶正通络方调控自噬对肺纤维化的影响[J]. 中华中医药杂志2020, 35(11): 5455-5459.
[1] 邓吟咏, 钟洁, 蒋理立, 杨婕. 结直肠肿瘤手术后并发症的预测与预防:基于临床研究的最新进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 579-583.
[2] 杨春燕, 周晓苹. 机器人辅助技术在腹腔镜结直肠癌根治术中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 584-588.
[3] 张静莹, 杨颖, 曾雪华, 鲁翔华, 吕晓静, 陈石. 利用定量计算机断层扫描纤维化和肺气肿特征预测特发性肺纤维化患者临床结局[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 714-720.
[4] 李群, 赵贺红, 王俊轶, 陈锋, 沈剑. 白细胞介素-18结合蛋白对特发性肺纤维化预后的临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 708-713.
[5] 喻星豪, 黄娜, 刘罡. 肺癌的靶向与免疫联合治疗的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 330-333.
[6] 顾佩玉, 曹磊, 刘澄英, 曹励强, 李杰, 王晓雯. IR-780 调节糖酵解抑制特发性肺纤维化的机制分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 8-14.
[7] 兰永, 刘晶, 杨志琦, 吴浪, 沙小春, 李明皓. 肠道菌群在胰腺炎发生发展中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(03): 481-486.
[8] 李洪黎, 张妍春. 神经营养因子对糖尿病视网膜病变神经血管单元损伤保护的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(03): 176-182.
[9] 刘硕, 吉文玉, 秦虎, 汪永新. 脑室出血继发脑积水相关发病机制及治疗研究进展[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(03): 192-196.
[10] 周振宇, 杨利君, 薛伟, 彭亮. 推拿治疗肠易激综合征的研究进展[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(02): 185-190.
[11] 杨宁, 王富春. 头针久留法的临床研究进展[J/OL]. 中华针灸电子杂志, 2025, 14(01): 24-27.
[12] 贺伟伦, 江哲宇, 王黎洲. 肺栓塞诊断与治疗的研究进展[J/OL]. 中华介入放射学电子杂志, 2025, 13(03): 250-256.
[13] 欧范妍, 郭乾, 曾莉雄, 陈秋莉, 甘厚玉, 杨洁. 基于机器学习和转录组学综合分析线粒体自噬和铁死亡关键基因在成人脓毒症诱导ARDS中的免疫调控作用机制[J/OL]. 中华卫生应急电子杂志, 2025, 11(02): 86-101.
[14] 马一茁, 胡叶文. 脑卒中患者营养风险筛查与评估工具的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(01): 54-57.
[15] 游洪, 乔杉, 张宇. 脑卒中患者居家延续护理模式的研究新进展[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(01): 63-67.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?