切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2025, Vol. 18 ›› Issue (06) : 866 -871. doi: 10.3877/cma.j.issn.1674-6902.2025.06.003

论著

跨肺驱动压导向呼气末正压通气对急性呼吸窘迫综合征患者肺功能及预后的影响
吴蓉1, 蔡喆燚1, 黄运华1, 乐金海1, 张萍2, 陈献1, 易琼1,()   
  1. 1410000 长沙,湖南中医药大学第一附属医院重症医学科
    2410000 长沙,湖南中医药大学第一附属医院手外创伤科
  • 收稿日期:2025-07-22 出版日期:2025-12-25
  • 通信作者: 易琼
  • 基金资助:
    国家自然科学基金资助项目(青年科学基金项目)(82204986); 湖南省卫健委科研项目(202103031584); 国家中医优势专科-重症医学科(czxm-zzyxk-2024001); 湖南中医药大学校院联合基金重点项目(2025XYLH010)

Effect of transpulmonary driving pressure guided positive end-expiratory pressure ventilation on pulmonary function and prognosis in patients with acute respiratory distress syndrome

Rong Wu1, Zheyi Cai1, Yunhua Huang1, Jinhai Le1, Ping Zhang2, Xian Chen1, Qiong Yi1,()   

  1. 1Department of Critical Care Medicine, The First Hospital of Hunan University of Chinese Medicine, Changsha 410000, China
    2Department of External Hand Trauma, The First Hospital of Hunan University of Chinese Medicine, Changsha 410000, China
  • Received:2025-07-22 Published:2025-12-25
  • Corresponding author: Qiong Yi
引用本文:

吴蓉, 蔡喆燚, 黄运华, 乐金海, 张萍, 陈献, 易琼. 跨肺驱动压导向呼气末正压通气对急性呼吸窘迫综合征患者肺功能及预后的影响[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(06): 866-871.

Rong Wu, Zheyi Cai, Yunhua Huang, Jinhai Le, Ping Zhang, Xian Chen, Qiong Yi. Effect of transpulmonary driving pressure guided positive end-expiratory pressure ventilation on pulmonary function and prognosis in patients with acute respiratory distress syndrome[J/OL]. Chinese Journal of Lung Diseases(Electronic Edition), 2025, 18(06): 866-871.

目的

探讨跨肺驱动压导向呼气末正压(positive end-expiratory pressure, PEEP)通气对急性呼吸窘迫综合征(acute respiratory distress syndrome, ARDS)患者肺功能及预后的影响。

方法

选择2021年5月至2024年7月我院收治的51例ARDS患者为对象,随机分为对照组25例和观察组26例。对照组接受潮气量PEEP滴定,观察组接受跨肺驱动压导向PEEP滴定。检测患者肺功能参数和血流动力学参数,记录住院时间、ICU住院时间、机械通气持续时间、脱机成功率、肺不张发生率及住院期间病死率。

结果

观察组PEEP(8.36±1.72)cmH2O高于对照组(6.17±1.58)cmH2O(t=4.730,P<0.05);生理无效腔分数(Vd/Vt)(31.97±8.22)%低于对照组(37.24±10.26)%(t=2.028,P<0.05)。两组入住ICU前呼吸力学和血气分析差异无统计学意义(P>0.05);机械通气48 h后观察组静态顺应性(45.76±20.00)ml/cmH2O、动脉血氧分压(arterial partial pressure of oxygen, PaO2)(127.73±32.27)mmHg、氧合指数(PaO2/FiO2)(380.40±106.53)、高于对照组静态顺应性(36.40±11.97)ml/cmH2O、PaO2(106.96±30.76)mmHg、PaO2/FiO2(310.17±97.29)(r=2.048,2.351,2.455,P<0.05);动态顺应性(29.27±8.17)ml/cmH2O、气道阻力(9.20±5.67)ml/cmH2O·L-1·s-1、血氧饱和度(blood oxygen saturation, SaO2)(105.29±19.64)%优于对照组动态顺应性(25.88±5.73)ml/cmH2O、气道阻力(11.25±7.65)ml/cmH2O·L-1·s-1、SaO2(103.08±17.25)%(t=1.709,1.090,0.427,P>0.05)。两组血流动力学参数差异无统计学意义(P>0.05)。观察组机械通气8.00(6.00,13.00)d、住院时间15.00(9.50,26.50)d和肺不张2例(7.69%)少于对照组机械通气20.00(9.00,28.00)d、住院时间33.00(12.50,62.00)d和肺不张5例(20.00%);观察组脱机成功14例(53.85%)高于对照组5例(20.00%)(P<0.05)。住院期间,观察组生存者20例(76.92%),死亡者6例(23.08%);对照组生存者12例(48.00%),死亡者13例(52.00%)。观察组中位生存时间30 d长于对照组23 d(P<0.05)。

结论

跨肺驱动压导向PEEP可改善ARDS患者氧合和肺顺应性,减少机械通气时长,降低肺不张和院内死亡风险,有助于提高脱机成功率。

Objective

To investigate the effect of transpulmonary driving pressure-guided positive end-expiratory pressure (PEEP) ventilation on lung function and prognosis in patients with acute respiratory distress syndrome (ARDS).

Methods

Fifty-one ARDS patients admitted to our hospital from May 2021 to July 2024 were selected and randomly divided into a control group (n=25) and an observation group (n=26). The control group received tidal volume PEEP titration, while the observation group received transpulmonary driving pressure-guided PEEP titration. Lung function parameters and hemodynamic parameters were measured, and hospital stay, ICU stay, duration of mechanical ventilation, weaning success rate, incidence of atelectasis, and in-hospital mortality were recorded.

Results

The PEEP in the observation group was (8.36±1.72) cmH2O, higher than that in the control group (6.17±1.58) cmH2O(t=4.730, P<0.05). The physiological dead space fraction (Vd/Vt) in the observation group was (31.97±8.22)%, lower than that in the control group (37.24±10.26)%(t=2.028, P<0.05). There were no statistically significant differences in respiratory mechanics and blood gas analysis between the two groups before ICU admission (P>0.05). After 48 hours of mechanical ventilation, the observation group showed higher static compliance (45.76±20.00) ml/cmH2O, arterial partial pressure of oxygen (PaO2) (127.73±32.27) mmHg, and oxygenation index (PaO2/FiO2) (380.40±106.53) compared to the control group′s static compliance (36.40±11.97) ml/cmH2O, PaO2(106.96±30.76)mmHg, and PaO2/FiO2(310.17 ± 97.29) (r=2.048, 2.351, 2.455, P<0.05). Additionally, the observation group′s dynamic compliance (29.27±8.17) ml/cmH2O, airway resistance (9.20±5.67) cmH2O·L-1·s-1, and blood oxygen saturation (SaO2) (105.29±19.64)% were better than the control group′s dynamic compliance (25.88±5.73) ml/cmH2O, airway resistance (11.25±7.65) cmH2O·L-1·s-1, and SaO2 (103.08±17.25)% (t=1.709, 1.090, 0.427, P>0.05). There were no statistically significant differences in hemodynamic parameters between the two groups (P>0.05). The duration of mechanical ventilation [8.00(6.00, 13.00)days], hospital stay [15.00 (9.50, 26.50) days], and incidence of atelectasis [2 cases (7.69%)] in the observation group were lower than those in the control group [20.00 (9.00, 28.00) days, 33.00 (12.50, 62.00) days, and 5 cases (20.00%), respectively]. The weaning success rate in the observation group [14 cases (53.85%)] was higher than that in the control group [5 cases(20.00%)] (P<0.05). During hospitalization, there were 20 survivors (76.92%) and 6 deaths (23.08%) in the observation group, compared to 12 survivors (48.00%) and 13 deaths (52.00%) in the control group. The median survival time in the observation group was 30 days, longer than that in the control group (23 days) (P<0.05).

Conclusion

Transpulmonary driving pressure-guided PEEP can improve oxygenation and lung compliance in ARDS patients, reduce the duration of mechanical ventilation, lower the risk of atelectasis and in-hospital mortality, and help improve the weaning success rate.

表1 两组ARDS患者临床资料结果比较
图1 ARDS患者典型CT图像。肺部片状高密度影,见空气支气管征,双肺多发结节,胸膜凹陷征象;双肺胸膜下散在索条、斑片灶;左侧胸腔少量积液、胸膜增厚,双侧胸腔少许积液
表2 两组ARDS患者呼吸力学及血气分析结果(±s)
表3 两组ARDS患者血流动力学结果比较(±s)
1
Battaglini D, Iavarone IG, Robba C, et al. Mechanical ventilation in patients with acute respiratory distress syndrome: current status and future perspectives[J]. Expert Rev Med Dev, 2023, 20(11): 905-917.
2
马娟娟,陈雪玲,王蕾. ARDS患者救治中有创呼吸机辅助呼吸的临床干预及疗效分析[J/OL]. 中华肺部疾病杂志(电子版), 2022, 15(6): 876-878.
3
Banavasi H, Nguyen P, Osman H, et al. Management of ARDS-What works and what does not[J]. Am J e Med Sci, 2021, 362(1): 13-23.
4
Gao Y, He H, Chi Y, et al. Electrical impedance tomography guided positive end-expiratory pressure titration in critically ill and surgical adult patients: a systematic review and meta-analysis[J]. BMC Pulmon Med, 2024, 24(1): 582.
5
Jimenez JV, Munroe E, Weirauch AJ, et al. Electric impedance tomography-guided PEEP titration reduces mechanical power in ARDS: a randomized crossover pilot trial[J]. Crit Care, 2023, 27(1):21-26.
6
He H, Chi Y, Yang Y, et al. Early individualized positive end-expiratory pressure guided by electrical impedance tomography in acute respiratory distress syndrome: a randomized controlled clinical trial[J]. Crit Care, 2021, 25(1): 230-239.
7
Millington SJ, Cardinal P, Brochard L. Setting and titrating positive end-expiratory pressure[J]. Chest, 2022161(6): 1566-1575.
8
Thornton LT, Kummer RL, Marini JJ. The place of positive end expiratory pressure in ventilator-induced lung injury generation[J]. Current Opin Crit Care, 2024, 30(1): 4-9.
9
Coppola S, Catozzi G, Pozzi T, et al. Driving pressure vs. oxygenation-based PEEP titration strategies in ARDS patients: a physiological study[J]. Crit Care, 2025, 29(1): 289.
10
Dostal P, Dostalova V. Practical aspects of esophageal pressure monitoring in patients with acute respiratory distress syndrome[J]. J Personal Med, 2023, 13(1): 136-144.
11
Florio G, Carlesso E, Mojoli F, et al. Esophageal pressure as estimation of pleural pressure: a study in a model of eviscerated chest[J]. BMC Anesthesiol, 2024, 24(1): 415.
12
Zheng CZ, Cortes-Puentes GA. Airway versus transpulmonary driving pressures during pressure support ventilation in ARDS[J]. Respirat Care, 2023, 68(11): 1606-1608.
13
郝泽宇,王明星,刘景仑. 急性呼吸窘迫综合征患者不当呼吸驱动导致肺损伤的监测与治疗[J]. 实用医院临床杂志2024, 21(4): 39-43.
14
ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin Definition[J]. JAMA, 2012, 307(23): 2526-2533.
15
Silva PL, Ball L, Rocco PRM, et al. Physiological and pathophysiological consequences of mechanical ventilation[J]. Semin Respir Crit Care Med, 2022, 43(3): 321-334.
16
Huang HY, Huang CY, Li LF. Prolonged mechanical ventilation: outcomes and management[J]. J Clin Med, 2022, 11(9): 2451.
17
Thornton LT, Kummer RL, Marini JJ. The place of positive end expiratory pressure in ventilator-induced lung injury generation[J]. Current Opin Crit Care, 2024, 30(1): 4-9.
18
Zhou Y, Song Z, Cai J, et al. Effect of dynamic lung compliance-guided positive end-expiratory pressure on postoperative pulmonary complications following thoracoscopic lobectomy: a randomized controlled trial[J]. BMC Anesthesiol, 2025, 25(1): 306.
19
吴琼,徐兰娟,贾宝辉,等. 食道压指导呼气末正压设置行机械通气治疗创伤性颅脑损伤合并急性呼吸窘迫综合征患者的效果[J]. 中华烧伤杂志2021, 37(5): 446-452.
20
Robba C, Battaglini D, Ball L, et al. Ten things you need to know about intensive care unit management of mechanically ventilated patients with COVID-19[J]. Expert Rev Respir Med, 2021, 15(10): 1293-1302.
21
Sun J, Gao J, Huang GD, et al. The impact of a lung-protective ventilation mode using transpulmonary driving pressure titrated positive end-expiratory pressure on the prognosis of patients with acute respiratory distress syndrome[J]. J Clin Monit Comput, 2024, 38(6): 1405-1414.
22
Ball L, Talmor D, Pelosi P. Transpulmonary pressure monitoring in critically ill patients: pros and cons[J]. Critical Care, 2024, 28(1): 177.
23
Zakynthinos GE, Tsolaki V, Mantzarlis K, et al. Navigating heart-lung Interactions in mechanical ventilation: pathophysiology, diagnosis, and advanced management strategies in acute respiratory distress syndrome and beyond[J]. J Clin Med, 2024, 13(24): 7788.
24
杨昌建,魏磊,严松范,等. 跨肺驱动压导向通气策略对老年肠癌根治术患者的肺保护作用[J]. 局解手术学杂志2022, 31(9): 799-803.
25
冯芸,刘娟,周圣哲,等. 俯卧位通气时间对急性呼吸窘迫综合征病死率影响的Meta分析[J/OL]. 中华肺部疾病杂志(电子版), 2020, 13(4): 524-526.
[1] 罗兵, 董凤群, 牛艺臻, 王锟, 程志华, 刘宏强. 胎儿超声心动图在单纯性肺动脉瓣狭窄及预后评估中的价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 740-747.
[2] 金烨莹, 王艺璇, 杨瑞. 基于单细胞RNA测序的乳腺癌肿瘤相关巨噬细胞亚群鉴定与临床预后分析[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 339-347.
[3] 毛俊, 蔡兆伦, 尹晓南, 沈朝勇, 张波. 影像组学预测模型在胃肠间质瘤诊断及预后中的研究进展[J/OL]. 中华普通外科学文献(电子版), 2025, 19(06): 421-425.
[4] 贺雅莉, 黄丽, 杨培娟. 功能保留手术在低位直肠癌治疗中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 701-704.
[5] 田超, 黄若曦, 蒋茂林, 谢崇伟, 刁鹏飞, 钟苏权, 陈东, 王航涛, 陈桂柳, 陈虞娟, 李国良. 不同亚型前列腺癌新辅助化疗后盆腔淋巴结转移的风险因素及时间分布[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 727-735.
[6] 杨刚, 黄徐建, 朱建交, 熊永福, 李敬东. 两种不同类型肝门周围胆管癌临床病理特征及生存预后[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 931-938.
[7] 吴刚, 严燃星, 严鑫, 阎婧, 何跃明, 朱倩. 基于血清和组织外泌体多组学分析筛选胰腺癌诊断和预后标志物[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 962-972.
[8] 张燕, 许丁伟, 胡满琴, 黄昊扬, 宋光娜, 黄洁. 术前免疫炎症指标对肝癌肝切除术患者生存预后的预测价值[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 707-715.
[9] 方兴保, 庞国莲, 李月宏, 蔡艳. 基于多组学分析MCAM在肝癌中表达及其与生存预后和免疫细胞浸润的关系[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 716-724.
[10] 陈佳乐, 余安海, 袁文康, 张超, 张冲. 肝切除术围手术期监测及处理[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 785-788.
[11] 李恺, 敖强国, 陶亚茹, 李青霖. 脓毒症相关急性肾损伤患者临床特点及90天预后影响因素分析[J/OL]. 中华肾病研究电子杂志, 2025, 14(05): 248-253.
[12] 孙瑜, 张爱华. 子痫前期患者肾脏远期预后影响因素分析[J/OL]. 中华肾病研究电子杂志, 2025, 14(05): 254-263.
[13] 袁慧, 周芦忠, 汤鹤年, 潘菊花. LMR与PHR对射频消融术后肝细胞癌患者预后的评估[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(06): 635-641.
[14] 刘艳晶, 解祥军, 魏志. 术前丙氨酸氨基转移酶/天冬氨酸氨基转移酶比值与消化道肿瘤预后的关系[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(06): 655-660.
[15] 高兴梅, 周洁容, 杨溢, 张孟祥, 张仲谋, 李斌. 重症肺炎患者血磷水平轨迹与短期预后之间的关系[J/OL]. 中华临床医师杂志(电子版), 2025, 19(07): 479-485.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?