切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2025, Vol. 18 ›› Issue (06) : 860 -865. doi: 10.3877/cma.j.issn.1674-6902.2025.06.002

论著

二硫化钼负载铂钯联用氮化硼的新型传感器构建及对神经元特异性烯醇化酶的检测研究
陈雪梅1,2, 郭宇桐3, 刘锦程1, 钱航1, 王斌1, 徐智1,()   
  1. 1400037 重庆,陆军(第三)军医大学第二附属医院呼吸与危重症医学中心
    2400039 重庆,重庆市西区医院内分泌与代谢病科
    3400037 重庆,陆军(第三)军医大学第二附属医院检验科
  • 收稿日期:2025-09-09 出版日期:2025-12-25
  • 通信作者: 徐智
  • 基金资助:
    重庆市技术创新与应用发展专项重点项目(CSTC2021jscx-gksb-N0029); 教育部医药基础研究创新中心开放项目(ARSBIC-C-202403)

Construction of a novel sensor based on platinum-palladium supported molybdenum disulfide and boron nitride for the detection of neuron-specific enolase

Xuemei Chen1,2, Yutong Guo3, Jingcheng Liu1, Hang Qian1, Bing Wang1, Zhi Xu1,()   

  1. 1Department of Respiratory Medicine, Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
    2Department of Endocrinology and Metabolic Diseases, Western District Hospital, Chongqing 400039, China
    3Department of Laboratory Medicine, Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
  • Received:2025-09-09 Published:2025-12-25
  • Corresponding author: Zhi Xu
引用本文:

陈雪梅, 郭宇桐, 刘锦程, 钱航, 王斌, 徐智. 二硫化钼负载铂钯联用氮化硼的新型传感器构建及对神经元特异性烯醇化酶的检测研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(06): 860-865.

Xuemei Chen, Yutong Guo, Jingcheng Liu, Hang Qian, Bing Wang, Zhi Xu. Construction of a novel sensor based on platinum-palladium supported molybdenum disulfide and boron nitride for the detection of neuron-specific enolase[J/OL]. Chinese Journal of Lung Diseases(Electronic Edition), 2025, 18(06): 860-865.

目的

构建一种检测肺癌标志物神经元特异性烯醇化酶(neuron-specific enolase, NSE)的高性能电化学免疫传感器。

方法

采用二维纳米材料氮化硼(boron nitride, BN)作为吸附基质沉积纳米金(aurum, Au)增加比表面积;二硫化钼负载铂钯(molybdenum disulfide@platinum-palladium, MoS2@ PtPd)纳米模拟酶复合物用于电子转移催化,催化放大信号检测NSE;考察传感器构建关键因素,确定最优条件,进行传感器可重复性、稳定性和特异性试验及临床标本方法学验证。

结果

BN直径200~500 nm,MoS2直径500~800 nm,MoS2@ PtPd复合物50~120 nm;电极表面结合BN电流下降40 μA,沉积金后电流增大15 μA,小牛血清白蛋白(bovine serum albumin, BSA)封闭电流减小9 μA,捕获NSE电流下降15μA;催化H2O2最佳总浓度为3μM,二抗与抗原结合最佳结合时间3 h;检测NSE标准曲线为I=-5.13-0.40LogCNSEr=0.92,最低检测限(low of detection, LOD)为0.86 pg/ml;传感器批间相对标准偏差(relative standard deviation, RSD)为2.91%,21 d后峰值电流保持其初始电流98.14%;1 ng/ml NSE与其他干扰蛋白对比,NSE(2.10±0.05)μA、甲胎蛋白(alpha-fetoprotein, AFP) (0.12±0.03)μA 、癌胚抗原(carcinoembryonic antigen, CEA) (0.15±0.02)μA、白蛋白(albumin, ALB) (0.21±0.02)μA、铁蛋白(ferritin, FER)(0.19±0.03)μA(P<0.05);4例血清标本应用性相对偏差1.70%~4.11%,回收率93.09%~103.12%。

结论

基于MoS2@ PtPd催化联用BN/Au膜的新型免疫传感器用于NSE检测,构建简便、性能良好,可用于肺癌早期诊断,具有临床意义。

Objective

To develop a high-performance electrochemical immunosensor for detecting the lung cancer biomarker neuron specific enolase (NSE).

Methods

Two dimensional nano material boron nitride (BN) was used as the adsorption matrix to deposit nano gold (Au), effectively increasing the specific surface area; Using molybdenum disulfide supported platinum palladium (MoS2@PtPd) nano mimetic enzyme complex for electron transfer catalysis and catalytic amplification signal detection of NSE; Determine the optimal conditions by examining the key factors involved in constructing sensors, and conduct repeatability, stability, and specificity tests on the sensors; And conduct methodological validation on clinical specimens.

Results

It showes that the diameter range of BN was 200~500 nm, nm, the diameter range of MoS2 was 500~800 nm, and the MoS2 @ PtPd complex was about 50~120 nm. The current of BN binding on the electrode surface decreased by 40 μ A, and the current increased by 15 μ A after gold deposition. The blocking current of bovine serum albumin (BSA) decreased by 9 μ A, and the capture current of NSE decreased by 15 μ A; The optimal total concentration for catalyzing H2O2 is 3 μ M, and the optimal binding time for the secondary antibody to bind to the antigen is after 3 hours; When detecting NSE, the standard curve is: I=-5.13-0.40 LogCNSE, r=0.92, and the low of detection (LOD) is 0.86 pg/ml; The relative standard deviation (R.S.D.) between sensor batches was 2.91%, and after 21 days, the peak current remained at 98.14% of its initial current; Compared with other interfering proteins at a concentration of 1 ng/ml, NSE was (2.10±0.05)μA, alpha fetoprotein (AFP) was (0.12±0.03)μA, carcinoembryonic antigen (CEA) was (0.15±0.02)μA, albumin (ALB) was (0.21±0.02)μA, and ferritin (FER) was (0.19±0.03)μA (P<0.05); The relative deviation of four serum samples with severe applicability ranges from 1.70% to 4.11%, and the recovery rate ranges from 93.09% to 103.12%.

Conclusion

The novel immunosensor based on MoS2 @ PtPd catalytic combined with BN/Au membrane is simple to construct and has good performance for NSE detection. It provides an alternative method for early diagnosis of lung cancer, and has clinical significance.

图1 NSE免疫传感器制备与修饰流程图。图A为制备MoS2@纳米铂钯-NSE二抗修饰流程;图B为传感器电极制备与修饰流程注:MoS2为二硫化钼;BN为氮化硼;Thio为硫堇;Ab1为NSE一抗;Ab2为NSE二抗;BSA为小牛血清白蛋白;NSE为神经元特异性烯醇化酶;EDC为1-乙基-(3-二甲基氨基丙基)碳酰二亚胺;NHS为N-羟基丁二酰亚胺;PtPd铂钯
图2 TEM表征纳米材料形态图。图A为BN单质;图B为MoS2单质;图C为MoS2@ PtPd复合物
图3 CV及EIS表征NSE免疫传感器构建过程。图A为CV法表征;图B为EIS法表征注:a为裸玻碳电极;b为电极表面结合BN;c为电极表明沉积金;d为一抗与电极表面BN/Au膜结合;e为BSA封闭电极表面;f为一抗捕获NSE抗原
表1 NSE免疫传感器与ELISA检测血清NSE结果比较
1
Siegel RL, Kratzer TB, Giaquinto AN, et al. Cancer statistics, 2025[J]. CA Cancer J Clin, 2025, 75 (1): 10-45.
2
毛德强,焦艳,沈卓之,等. 2016年重庆市常住人口死因特征分析[J]. 现代预防医学2017, 44(24): 4501-4503, 4527.
3
陈俐,文小焱,曾昭宇,等. 2006-2014年重庆市恶性肿瘤疾病负担研究[J]. 中国预防医学杂志2017, (11): 864-868.
4
The Lancet. Lung cancer treatment: 20 years of progress[J]. Lancet2024, 403 (10445): 2663.
5
喻星豪,黄娜,刘罡. 肺癌的靶向与免疫联合治疗的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(2): 330-333.
6
Chen Lina, Zhang Xiu-Hao, Mao Zi-Ji, et al. Clinical outcomes and neuroendocrine features of transformed versus primary small-cell lung cancer[J]. Lung Cancer, 2025, 207: 108714.
7
中华医学会肿瘤学分会,中华医学会杂志社. 中华医学会肿瘤学分会肺癌临床诊疗指南(2021版)[J]. 中华医学杂志2021, 101 (23): 1725-1757.
8
Dong Lili, Ren Suxia, Zhang Xiuqiang, et al. In-situ synthesis of Pt nanoparticles/reduced graphene oxide/cellulose nanohybrid for nonenzymatic glucose sensing[J]. Carbohydr Polym, 2023, 303: 120463.
9
Dachraoui Walid, Bodnarchuk Maryna I, Erni Rolf. Direct imaging of the atomic mechanisms governing the growth and shape of bimetallic Pt-Pd nanocrystals by in situ liquid cell STEM[J]. ACS Nano, 2022, 16(9): 14198-14209.
10
Thai Alesha A, Solomon Benjamin J, Sequist Lecia V, et al. Lung cancer[J]. Lancet, 2021, 398 (10299): 535-554.
11
Li Xiangyu, Chen Kun, Li Jie, et al. Diagnostic value of cerebrospinal fluid human epididymis protein 4 for leptomeningeal metastasis in lung adenocarcinoma[J]. Front Immunol, 2024, 15: 1339914.
12
Wang Keyi, Chang Zixuan, Li Yingjie, et al. Precise detection of NSE and ProGRP with nanoprobes for early diagnosis of small cell lung cancer[J]. Chem Commun (Camb), 2025, 61(15): 3179-3182.
13
Hu Lihua, Shi Tengfei, Chen Jiye, et al. Dual-quenching electrochemiluminescence resonance energy transfer system from CoPd nanoparticles enhanced porous g-C(3)N(4) to FeMOFs-sCuO for neuron-specific enolase immunosensing[J]. Biosens Bioelectron, 2023, 226: 115132.
14
唐艳丽,吴思思,周斌,等. 纳米生物传感器用于肺癌标志物检测的研究进展[J]. 化学传感器2024, 44(1): 32-39.
15
彭晨曦,龚国傲,蔡珂,等. 纳米金复合碳材料修饰的免疫传感器检测血清中CYFRA21-1[J]. 传感器与微系统2025, 44(1): 114-118.
16
李瑞怡,储红霞,余敏仪,等. 自催化型石墨烯-金纳米探针的制备及用于非小细胞肺癌CYFRA21-1电化学检测[J]. 分析化学2020, 48(7): 871-880.
17
Liu Shangheng, Huang Wei-Hsiang, Meng Shuang, et al. 3D noble-metal nanostructures approaching atomic efficiency and atomic density limits[J]. Adv Mater, 2024, 36(18): e2312140.
18
Naclerio Andrew E, Kidambi Piran R. A review of scalable hexagonal boron nitride (h-BN) synthesis for present and future applications[J]. Adv Mater, 2023, 35(6): e2207374.
19
Ma Jianfeng, Yao Qunyan, Lv Suo, et al. Integrated triple signal amplification strategy for ultrasensitive electrochemical detection of gastric cancer-related microRNA utilizing MoS(2)-based nanozyme, hybridization chain reaction, and horseradish peroxidase[J]. J Nanobiotechnology, 2024, 22(1): 596.
20
林镇峰,李芯立,李杨子,等. 基于氮化硼电沉积金传感器对药剂中乙酰氨基酚的检测[J]. 分析科学学报2021, 37(3): 323-328.
21
Yuan Xueli, Lin Bowen, Liu Tao, et al. Recent progress on nanomaterial-facilitated electrochemical strategies for cancer diagnosis[J]. Adv Healthc Mater, 2023, 12(16): e2203029.
22
Deng MZ, Zhong MY, Li ML, et al. Research progress on electrochemiluminescence nanomaterials and their applications in biosensors-A review[J]. Anal Chim Acta, 2025, 1361: 344148.
23
Jouha Jabrane, Xiong Hai. DNAzyme-functionalized nanomaterials: recent preparation, current applications, and future challenges[J]. Small, 2021, 17(51): e2105439.
24
Kim M, Hong S, Khan R, et al. Recent advances in nanomaterial-based biosignal sensors[J]. Small, 2025, 21(3): e2405301.
25
Krämer Tobias, Gyton Matthew R, Bustos Itxaso, et al. Stability and C-H Bond Activation Reactions of Palladium(I) and Platinum(I) Metalloradicals: Carbon-to-Metal H-Atom Transfer and an Organometallic Radical Rebound Mechanism[J]. J Am Chem Soc, 2023, 145(25): 14087-14100.
26
周智凌,李朋朋,李爱学. 基于AuNPs/MoS2-COOH-MWCNTs的电化学适配体传感器用于检测赭曲霉毒素A[J]. 传感器与微系统2025, 44(7): 164-168.
27
贺彩梅,郑景伊,李晓霞. 基于二硫化钼/纳米金和硫堇/纳米金信号放大的雌二醇电化学适配体传感器[J]. 高等学校化学学报2019, 40(10): 2090-2096.
28
叶黄薇,孙菠,陈琦,等. Au/MoS2纳米复合材料构建的抗坏血酸电化学传感器的研究[J]. 化工时刊2019, 33(9): 1-5.
29
蒲苏丹,文小兵. 基于纳米材料的电化学生物传感器在肿瘤标志物检测中的应用研究进展[J]. 浙江医学2025, 47(15): 1663-1666, 1672.
30
周成顺,张魁星,李丽萍. 石墨烯复合材料电化学免疫传感器在肿瘤标志物检测中的应用[J]. 化学通报2022, 85(1): 44-51.
31
Wu Xinhao, Guo Yanan, Sun Zengsen, et al. Fast operando spectroscopy tracking in situ generation of rich defects in silver nanocrystals for highly selective electrochemical CO2 reduction[J]. Nature Communicat, 2021, 12(1): 660.
32
Yang Bin, Kong Jilie, Fang Xueen. Programmable CRISPR-Cas9 microneedle patch for long-term capture and real-time monitoring of universal cell-free DNA[J]. Nature Communicat, 2022, 13(1): 3999.
[1] 邓宝, 郭子琳, 仲雷. 乳腺癌治疗中的铁死亡机制与铁基纳米材料应用进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 362-368.
[2] 唐雪飞, 蒋润民, 倪云峰, 雷杰, 王文辰, 赵雅波, 马首政, 姜涛. 小细胞肺癌和大细胞神经内分泌癌微生物群特征[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 721-726.
[3] 高瞻, 唐莎莎, 秦蘅, 王关嵩, 张雯. 慢性阻塞性肺疾病合并肺癌的临床特征及危险因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 685-690.
[4] 高红, 潘冬青, 陈凤, 张林香, 苗素琴, 韩坤秀, 曲乐, 闫萍. 胸腔镜支气管肺癌肺段切除术后中重度急性疼痛风险分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 732-736.
[5] 贾贝丽, 冯雅琳, 林苏杰, 刘婧, 张雪丽, 周亚菲. 肺癌患者化疗期间院内肺部感染临床特征及其影响因素[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 742-746.
[6] 吴靓, 石晴晴, 徐海龙, 江海城, 李健, 宋志静, 赵盼盼. 超声引导下前锯肌平面阻滞联合全身麻醉对肺癌胸腔镜肺叶切除术后镇痛及肺功能的影响[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 773-778.
[7] 陈璐, 鲁静, 帅维正, 狄守印, 王倩, 陶莎, 杨玉晶. 全程肺康复管理在肺癌患者胸腔镜围术期的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 811-813.
[8] 李才坤, 张又红, 肖斌彬, 温盼, 刘醒, 刘志栋, 周剑辉, 温春玲, 叶劲, 严恒琛. 三维斑点追踪在肺癌患者免疫治疗后左心房功能损害评价的应用[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 821-823.
[9] 张青, 吴灵芝, 冯契靓, 陈荣荣, 秦二云, 张诚实, 赵云峰, 雷撼, 刘明. 黄芪多糖调控CEACAM7通过EMT通路抑制肺癌A549细胞恶性生物学行为的机制研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 552-557.
[10] 王大泉, 应开军, 孙云浩, 王尧. 胸腔镜支气管袖式切除术对肺癌患者术后并发症及呼吸功能的影响[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 620-625.
[11] 王勇, 董家才, 关江, 何晋琴, 戴红霞, 刘经伟, 张永伦, 郑重庆. 胸腔内迷走神经阻滞复合全身麻醉在胸腔镜肺癌肺叶切除术中的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 626-631.
[12] 孙晓容, 钟瑶, 张雯, 刘佳铭, 叶东樊. 肺癌免疫治疗并发脊髓炎救治成功一例[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 657-659.
[13] 程颖慧, 孙娟, 杨冬梅, 朱晓俊, 程鹤, 郝月琴. 胸腔镜肺癌根治术后并发症影响因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 442-446.
[14] 刘晓青, 张又丹, 张雪玲, 戴纪刚, 刘权兴. 数字化患者画像动态症状模型在肺癌术后管理中的意义[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 429-433.
[15] 周玲, 肖颖, 李秋诗, 陈兆毅, 李琪, 吴园明. 亚麻木酚素通过circRNA HIPK3影响非小细胞肺癌A549 细胞凋亡及铁死亡的机制研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 362-368.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?