切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2025, Vol. 18 ›› Issue (05) : 721 -726. doi: 10.3877/cma.j.issn.1674-6902.2025.05.010

论著

小细胞肺癌和大细胞神经内分泌癌微生物群特征
唐雪飞, 蒋润民, 倪云峰, 雷杰, 王文辰, 赵雅波, 马首政, 姜涛()   
  1. 710038 西安,空军军医大学唐都医院胸腔外科
  • 收稿日期:2025-02-11 出版日期:2025-10-25
  • 通信作者: 姜涛
  • 基金资助:
    陕西省重点研发计划项目(2021ZDLSF01-08)

Characterization of microbiota in small-cell lung cancer and large-cell neuroendocrine carcinoma

Xuefei Tang, Runmin Jiang, Yunfeng Ni, Jie Lei, Wenchen Wang, Yabo Zhao, Shouzheng Ma, Tao Jiang()   

  1. Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, Xi′an 710038, China
  • Received:2025-02-11 Published:2025-10-25
  • Corresponding author: Tao Jiang
引用本文:

唐雪飞, 蒋润民, 倪云峰, 雷杰, 王文辰, 赵雅波, 马首政, 姜涛. 小细胞肺癌和大细胞神经内分泌癌微生物群特征[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 721-726.

Xuefei Tang, Runmin Jiang, Yunfeng Ni, Jie Lei, Wenchen Wang, Yabo Zhao, Shouzheng Ma, Tao Jiang. Characterization of microbiota in small-cell lung cancer and large-cell neuroendocrine carcinoma[J/OL]. Chinese Journal of Lung Diseases(Electronic Edition), 2025, 18(05): 721-726.

目的

分析小细胞肺癌(small cell lung cancer, SCLC)、大细胞神经内分泌癌(large cell neuroendocrine carcinoma, LCNEC)、良性肺部疾病支气管肺泡灌洗液(bronchoalveolar lavage fluid, BALF)微生物,探索肺癌与肺部微生物群的关系。

方法

选择2021年5月至2023年12月我院收治的接受支气管镜检查患者29例,其中SCLC患者10例,LCNEC患者4例,肺部良性疾病患者15例。采集BALF样本中微生物组总DNA,根据V3~V4序列选择引物行PCR扩增,使用NovaSeq 6000测序仪行高通量双端测序,利用生物信息学方法分析序列数据。

结果

SCLC及LCNEC的微生物组α多样性如Chao1指数(294.67;297.17)、Observed otus指数(288.00;293.25)、Shannon指数(5.85;6.15)高于肺部良性疾病(Chao1指数216.31、Observed otus指数211.73、Shannon指数4.90)(P<0.05),SCLC和LCNEC微生物组差异无统计学意义(P>0.05)。SCLC患者与肺部良性疾病间的β多样性差异有统计学意义(P=0.046)。与肺部良性疾病对比,SCLC和LCNEC患者中草酸杆菌科(Oxalobacteriaceae)、假单胞菌科(Pseudomonases)、黄单胞菌科(Xanthomonasceae)、肠杆菌科(Enterobacteriaceae)、莫拉菌科(Moraxellaceae)降低;普里沃氏菌科(Revotellap)、韦荣球菌科(Veillonella genus)、放线菌科(Actinomycetes)增高;SCLC和LCNEC患者中假单胞菌属、寡养单胞菌属、草螺菌属、不动杆菌属降低;普里沃氏菌属、韦荣球菌属、放线菌属增高。

结论

SCLC和LCNEC患者相对于肺部良性疾病的BALF存在菌群差异,可作为诊断或治疗的潜在靶点,具有临床意义。

Objective

This study investigates the microbial composition of bronchoalveolar lavage fluid (BALF) in cases of small cell lung cancer (SCLC), large cell neuroendocrine carcinoma (LCNEC), and benign pulmonary diseases. The objective is to examine potential associations between lung cancer and alterations in the pulmonary microbiome.

Methods

From May 2021 to December 2023, patients who underwent bronchoscopy in the Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University were enrolled. Among them, 10 cases were pathologically diagnosed as small cell lung cancer, 4 cases were diagnosed as large cell neuroendocrine carcinoma, and 15 cases were diagnosis of benign pulmonary disease served as a control. The total DNA of the microbiome in the BALF samples of the research subjects was collected, PCR amplification was performed with primers selected according to V3-V4 sequence, high-throughput paired-end sequencing was performed using the NovaSeq6000 sequencer, and the obtained sequence data was analyzed in depth using bioinformatics methods.

Results

The α-diversity of the microbiome, including indices such as Chao1 (294.67; 297.17), Observed OTUs (288.00; 293.25), and Shannon (5.85; 6.15), was higher in SCLC and LCNEC compared to benign pulmonary diseases (Chao1: 216.31, Observed OTUs: 211.73, Shannon: 4.90) (P<0.05). There was no statistically significant difference in the microbiome between SCLC and LCNEC (P>0.05). However, the β-diversity between SCLC and benign pulmonary diseases exhibited a statistically significant difference (P=0.046). Compared with the benign control group, at the family level, Oxalobacteriaceae, Pseudomonases, Xanthomonasceae, Enterobacteriaceae, and Moraxellaceae were significantly reduced in small cell lung cancer and large cell neuroendocrine carcinoma; veillonellaceae and actinomycetes were significantly increased. At the genus level, the genera of pseudomonas, stenotrophomonas, spirulina, and acinetobacter were significantly reduced in small cell lung cancer and large cell neuroendocrine carcinoma; Prevotellap, Veillonella genus and Actinomycetes significantly increased.

Conclusion

These bacteria are expected to be new potential targets for the diagnosis or treatment of small cell lung cancer and large cell neuroendocrine carcinoma.

1
李咏生,孙建国,李梦侠,等. 第三代EGFR-TKI耐药后诊疗策略专家共识[J/OL]. 中华肺部疾病杂志(电子版), 2023, 16(2): 145-155.
2
徐康乔,张国清,严智亮,等. 外泌体环状RNA与肺癌关系[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(2): 334-337.
3
中华医学会肿瘤学分会,中华医学会杂志社. 中华医学会肺癌临床诊疗指南(2022版)[J]. 中华肿瘤杂志2022, 44(6): 457-490.
4
Rudin CM, Brambilla E, Faivre-Finn C, et al. Small-cell lung cancer[J]. Nat Rev Dis Primers, 2021, 7(1): 3.
5
Frese KK, Simpson KL, Dive C. Small cell lung cancer enters the era of precision medicine[J]. Cancer Cell, 2021, 39(3): 297-299.
6
Andrini E, Marchese PV, De Biase D, et al. Large cell neuroendocrine carcinoma of the lung: Current understanding and challenges[J]. J Clin Med, 2022, 11(5): 1461.
7
Lowczak A, Kolasinska-Cwikla A, Osowiecka K, et al. Outcomes of patients with pulmonary large cell neuroendocrine carcinoma in Ⅰ-Ⅳ stage[J]. Medicina (Kaunas), 2021, 57(2): 118.
8
Gao S, Li N, Wang S, et al. Lung cancer in people's republic of China[J]. J Thorac Oncol, 2020, 15(10): 1567-1576.
9
Howlader N, Forjaz G, Mooradian MJ, et al. The effect of advances in lung-cancer treatment on population mortality[J]. N Engl J Med, 2020, 383(7): 640-649.
10
Liu SM, Zheng MM, Pan Y, et al. Emerging evidence and treatment paradigm of non-small cell lung cancer[J]. J Hematol Oncol, 2023, 16(1): 40.
11
Wang Q, Gumus ZH, Colarossi C, et al. SCLC: Epidemiology, risk factors, genetic susceptibility, molecular pathology, screening, and early detection[J]. J Thorac Oncol, 2023, 18(1): 31-46.
12
Dawkins JBN, Webster RM. The small-cell lung cancer drug market[J]. Nat Rev Drug Discov, 2020, 19(8): 507-508.
13
Petty WJ, Paz-Ares L. Emerging strategies for the treatment of small cell lung cancer: a review[J]. JAMA Oncol, 2023, 9(3): 419-429.
14
Zugazagoitia J, Paz-Ares L. Extensive-stage small-cell lung cancer: First-line and second-line treatment options[J]. J Clin Oncol, 2022, 40(6): 671-680.
15
Bilski M, Mertowska P, Mertowski S, et al. The role of conventionally fractionated radiotherapy and stereotactic radiotherapy in the treatment of carcinoid tumors and large-cell neuroendocrine cancer of the lung[J]. Cancers (Basel), 2021, 14(1): 177.
16
Mohajeri MH, Brummer RJM, Rastall RA, et al. The role of the microbiome for human health: from basic science to clinical applications[J]. Eur J Nutrition, 2018, 57(Suppl 1): S1-S14.
17
Ogunrinola GA, Oyewale JO, Oshamika OO, et al. The human microbiome and its impacts on health[J]. Int J Microbiol, 2020, 2020: 8045646.
18
Raza MH, Gul K, Arshad A, et al. Microbiota in cancer development and treatment[J]. J Cancer Res Clin Oncol, 2019, 145(1): 49-63.
19
de Martel C, Georges D, Bray F, et al. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis[J]. Lancet Global Health, 2020, 8(2): E180-E190.
20
Riquelme E, Zhang Y, Zhang L, et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes[J]. Cell, 2019, 178(4): 795-806.
21
Mager LF, Burkhard R, Pett N, et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy[J]. Science, 2020, 369(6510): 1481-1489.
22
Kovaleva OV, Romashin D, Zborovskaya IB, et al. Human lung microbiome on the way to cancer[J]. J Immunol Res, 2019, 2019: 1394191.
23
Maddi A, Sabharwal A, Violante T, et al. The microbiome and lung cancer[J]. J Thorac Dis, 2019, 11(1): 280-291.
24
Perrone F, Belluomini L, Mazzotta M, et al. Exploring the role of respiratory microbiome in lung cancer: a systematic review[J]. Crit Rev Oncol Hematol, 2021, 164: 103404.
25
Wypych TP, Wickramasinghe LC, Marsland BJ. The influence of the microbiome on respiratory health[J]. Nat Immunol, 2019, 20(10): 1279-1290.
26
Jin J, Gan Y, Liu H, et al. Diminishing microbiome richness and distinction in the lower respiratory tract of lung cancer patients: A multiple comparative study design with independent validation[J]. Lung Cancer, 2019, 136: 129-135.
27
Wensel CR, Pluznick JL, Salzberg SL, et al. Next-generation sequencing: insights to advance clinical investigations of the microbiome[J]. J Clin Invest, 2022, 132(7): e154944.
28
Schlaberg R. Microbiome diagnostics[J]. Clin Chem, 2020, 66(1): 68-76.
29
Weinroth MD, Belk AD, Dean C, et al. Considerations and best practices in animal science 16S ribosomal RNA gene sequencing microbiome studies[J]. J Anim Sci, 2022, 100(2): skab346.
30
Lee SH, Sung JY, Yong D, et al. Characterization of microbiome in bronchoalveolar lavage fluid of patients with lung cancer comparing with benign mass like lesions[J]. Lung Cancer, 2016, 102: 89-95.
31
Zhuo M, An T, Zhang C, et al. Characterization of microbiota in cancerous lung and the contralateral non-cancerous lung within lung cancer patients[J]. Front Oncol, 2020, 10: 1584.
32
Huang D, Su X, Yuan M, et al. The characterization of lung microbiome in lung cancer patients with different clinicopathology[J]. Am J Cancer Res, 2019, 9(9): 2047-2063.
33
Garrett WS. Cancer and the microbiota[J]. Science, 2015, 348(6230): 80-86.
34
Chen J, Domingue JC, Sears CL. Microbiota dysbiosis in select human cancers: Evidence of association and causality[J]. Sem Immunol, 2017, 32: 25-34.
35
Wang K, Huang Y, Zhang Z, et al. A preliminary study of microbiota diversity in saliva and bronchoalveolar lavage fluid from patients with primary bronchogenic carcinoma[J]. Med Sci Monit, 2019, 25: 2819-2834.
36
Fang X, Wei J, He X, et al. Quantitative association between body mass index and the risk of cancer: A global Meta-analysis of prospective cohort studies[J]. Int J Cancer, 2018, 143(7): 1595-1603.
37
Budden KF, Gellatly SL, Wood DLA, et al. Emerging pathogenic links between microbiota and the gut-lung axis[J]. Nat Rev Microbiol, 2017, 15(1): 55-63.
[1] 刘恒, 吴涛, 鱼玲玲, 葸瑞, 潘耀柱, 毛东锋, 石亚军, 刘文慧, 田红娟, 王莹, 张晓菲, 张曦. 急性移植物抗宿主病相关特异性血清生物标志物分析[J/OL]. 中华移植杂志(电子版), 2025, 19(04): 237-242.
[2] 杨硕, 郭佳. 液体活检在前列腺癌进展监测中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 558-564.
[3] 余琪伟, 王省博, 姚林亚, 张曦, 吴余凡, 曾学明, 曾庆琪. 经皮胫神经刺激联合索利那新治疗前列腺癌根治术后膀胱功能障碍的疗效观察[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 586-592.
[4] 高瞻, 唐莎莎, 秦蘅, 王关嵩, 张雯. 慢性阻塞性肺疾病合并肺癌的临床特征及危险因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 685-690.
[5] 田学, 魏东坡, 孟潇潇, 谢晖, 王瑞兰. 生物信息学筛选相关肺纤维化诊断的生物标志物研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 534-539.
[6] 张青, 吴灵芝, 冯契靓, 陈荣荣, 秦二云, 张诚实, 赵云峰, 雷撼, 刘明. 黄芪多糖调控CEACAM7通过EMT通路抑制肺癌A549细胞恶性生物学行为的机制研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 552-557.
[7] 王大泉, 应开军, 孙云浩, 王尧. 胸腔镜支气管袖式切除术对肺癌患者术后并发症及呼吸功能的影响[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 620-625.
[8] 王勇, 董家才, 关江, 何晋琴, 戴红霞, 刘经伟, 张永伦, 郑重庆. 胸腔内迷走神经阻滞复合全身麻醉在胸腔镜肺癌肺叶切除术中的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 626-631.
[9] 孙晓容, 钟瑶, 张雯, 刘佳铭, 叶东樊. 肺癌免疫治疗并发脊髓炎救治成功一例[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 657-659.
[10] 袭厚榕, 隋晓峰. 基于生物信息学分析乳腺癌组织STIP1表达在免疫浸润中的作用[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(04): 208-216.
[11] 方兴保, 庞国莲, 李月宏, 蔡艳. 基于多组学分析MCAM在肝癌中表达及其与生存预后和免疫细胞浸润的关系[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 716-724.
[12] 姚金平, 郭涛, 张逸辰, 常磊, 冯雨舟, 崔精, 陈建欢, 鲍传庆. 基于免疫微环境分析探讨FN1与DOCK2在结肠癌中的预后价值[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(04): 333-344.
[13] 贺方正, 吴涛, 廖长胜, 李锡勇, 牛萌煊, 韩鹏飞. 创伤后骨关节炎模型大鼠血浆中microRNA特征组学研究[J/OL]. 中华老年骨科与康复电子杂志, 2025, 11(05): 257-270.
[14] 袁瑛, 徐超, 崔砚, 徐江, 徐如祥. 植入式自适应深部脑刺激在帕金森病治疗中的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(04): 193-198.
[15] 侯雨函, 姜福金, 王苏贵. 膀胱癌免疫治疗的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(06): 471-475.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?