切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2025, Vol. 18 ›› Issue (04) : 534 -539. doi: 10.3877/cma.j.issn.1674-6902.2025.04.007

论著

生物信息学筛选相关肺纤维化诊断的生物标志物研究
田学, 魏东坡, 孟潇潇, 谢晖, 王瑞兰()   
  1. 200080 上海,南京医科大学附属上海一院临床医学院急诊危重病科,上海交通大学医学院附属第一人民医院急诊危重病科
  • 收稿日期:2025-02-17 出版日期:2025-08-25
  • 通信作者: 王瑞兰
  • 基金资助:
    国家自然科学基金面上项目(82472218,82072210); 国家临床重点专科建设项目(Z155080000004); 国家重点研发计划(2024YFC30444000); 上海市科委基金资助(23Y31900100)

Identification of diagnostic biomarkers for acute respiratory distress syndrome-related pulmonary fibrosis based on boinformatics

Xue Tian, Dongpo Wei, Xiaoxiao Meng, Hui Xie, Ruilan Wang()   

  1. Department of Critical Care Medicine, Shanghai General Hospital of Nanjing Medical University, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China
  • Received:2025-02-17 Published:2025-08-25
  • Corresponding author: Ruilan Wang
引用本文:

田学, 魏东坡, 孟潇潇, 谢晖, 王瑞兰. 生物信息学筛选相关肺纤维化诊断的生物标志物研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 534-539.

Xue Tian, Dongpo Wei, Xiaoxiao Meng, Hui Xie, Ruilan Wang. Identification of diagnostic biomarkers for acute respiratory distress syndrome-related pulmonary fibrosis based on boinformatics[J/OL]. Chinese Journal of Lung Diseases(Electronic Edition), 2025, 18(04): 534-539.

目的

急性呼吸窘迫综合征(acute respiratory distress syndrome, ARDS)相关肺纤维化(pulmonary fibrosis, PF)目前缺乏应用于临床的诊断生物标志物,本文应用转录组学寻找ARDS中的肺纤维化相关基因并探索ARDS-PF的诊断生物标志物。

方法

联合分析GEO数据库中ARDS-PF转录组数据集GSE190496和特发性肺纤维化转录组数据集GSE10667获得共有差异表达基因(differentially expressed genes, DEGs),通过基因本体论(Gene Ontology, GO)和京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes, KEGG)数据库对DEGs进行功能富集分析、STRING数据库构建DEGs的蛋白质-蛋白质相互作用网络(protein-protein interaction, PPI)、cytoscape软件cytoHubba插件筛选核心基因,在ARDS-PF转录组数据集GSE206788中验证,绘制核心基因的受试者工作特征(receiver operating characteristic, ROC)曲线并计算曲线下面积(area under the curve, AUC)。

结果

筛选出234个共有DEGs,上调DEGs有132个,下调DEGs有102个。GO和KEGG富集显示这些基因主要参与胶原蛋白生成、细胞外基质胶原沉积、细胞外基质受体互作、局灶黏附、PI3K-Akt通路等生物过程和途径。STRING构建PPI网络并利用cytoscape筛选出的10个核心基因为COL1A1、COL1A2、COL3A1、COL5A2、CXCL12、IGF1、MMP2、SPP1、PTGS2和THBS2,其中9个核心基因在GSE206788中差异表达显著(P<0.05),ROC曲线显示COL1A1、COL1A2、COL3A1、CXCL12、IGF1、SPP1和PTGS2的AUC值≥0.9(P<0.01)。

结论

COL1A1、COL1A2、COL3A1、CXCL12、IGF1、SPP1和PTGS2可能是潜在的ARDS-PF诊断生物标志物。

Objective

Currently, there is a lack of clinically applicable diagnostic biomarkers for pulmonary fibrosis (PF) associated with acute respiratory distress syndrome (ARDS). This study aimed to identify PF-related genes in ARDS through transcriptomic analysis and explore potential diagnostic biomarkers for ARDS-associated pulmonary fibrosis (ARDS-PF).

Methods

Transcriptomic datasets GSE190496 (ARDS-PF) and GSE10667 (idiopathic pulmonary fibrosis) were jointly analyzed from the GEO database to identify common differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to investigate the functions of DEGs. A protein-protein interaction (PPI) network was constructed using the STRING database, and key hub genes were identified with the cytoHubba plugin in Cytoscape. The identified hub genes were validated in the ARDS-PF transcriptomic dataset GSE206788. Receiver operating characteristic (ROC) curves were generated, and the area under the curve (AUC) was calculated to evaluate the diagnostic performance of the hub genes.

Results

A total of 234 common DEGs were identified, including 132 upregulated and 102 downregulated genes. GO and KEGG enrichment analyses revealed that these genes were mainly involved in biological processes and pathways such as collagen formation, extracellular matrix (ECM) collagen deposition, ECM-receptor interaction, focal adhesion, and the PI3K-Akt signaling pathway. The PPI network constructed via STRING and analyzed with Cytoscape identified 10 hub genes: COL1A1, COL1A2, COL3A1, COL5A2, CXCL12, IGF1, MMP2, SPP1, PTGS2, and THBS2. Among them, 9 hub genes were significantly differentially expressed in GSE206788 (P<0.05). ROC curve analysis showed that COL1A1, COL1A2, COL3A1, CXCL12, IGF1, SPP1, and PTGS2 had AUC≥0.9 (P<0.01).

Conclusion

COL1A1, COL1A2, COL3A1, CXCL12, IGF1, SPP1, and PTGS2 may serve as potential diagnostic biomarkers for ARDS-PF.

图1 GSE190496和GSE10667共有DEGs筛选。图A为GSE190496数据集DEGs火山图,上调DEGs1253个,下调DEGs1000个;图B为GSE10667数据集DEGs火山图,上调DEGs844个,下调DEGs405个;图C为GSE190496和GSE10667两个数据集共有DEGs的韦恩图,红色区域代表GSE190496中特有的2 019个DEGs,蓝色区域代表GSE10667中特有的1 015个DEGs,阴影部分代表共有的234个DEGs。深红色原点:上调DEGs;深蓝色原点:下调DEGs;浅红色和浅蓝色原点:差异倍数小于1的基因;灰色原点:无差异表达基因;X轴:差异倍数取log2后数值;Y轴:P值取-log10后数值
图2 共有DEGs的GO和KEGG富集分析。图A为GO功能富集的前30条结果绘制的条形图,柱子的长度代表该条目中对应DEGs的数量,Y轴代表P值取-log10后数值;图B为KEGG富集分析的前20条通路绘制的气泡图,气泡的大小表示该通路中差异基因的数量,气泡颜色代表P注:BP为生物过程;CC为细胞组分;MF为分子功能;CellP.(Cellular Processes)为细胞过程;EnvIP.(Environmental Information Processing)为环境信息处理;HumaD.(Human Diseases)为人类疾病;Metab.(Metabolism)为代谢;OrgaS.(Organismal Systems)为生物系统
图3 GSE206788的DEGs和GO和KEGG富集。图A为DEGs火山图,上调DEGs有160个,下调DEGs有121个,深红色原点代表上调DEGs,深蓝色原点代表下调DEGs,方框中的基因为GSE206788中包含的核心基因,X轴:差异倍数取log2后数值;Y轴:P值取-log10后数值;图B为DEGs的GO功能富集的前30条,柱子的长度代表该条目中对应DEGs的数量,Y轴代表P值取-log10后数值;图C为DEGs的KEGG通路富集的前20条,气泡的大小表示该通路中差异基因的数量,气泡颜色代表P注:BP为生物过程;CC为细胞组分;MF为分子功能;CellP.(Cellular Processes)为细胞过程;EnvIP.(Environmental Information Processing)为环境信息处理;HumaD.(Human Diseases)为人类疾病;Metab.(Metabolism)为代谢;OrgaS.(Organismal Systems)为生物系统
1
魏丁,乔艳艳,顾兴,等. 体外膜肺氧合救治急性呼吸窘迫综合征不良预后危险因素分析[J/CD]. 中华肺部疾病杂志(电子版), 2024, 17(3): 363-367.
2
张鹏,史慢慢,马辉,等. 急性呼吸窘迫综合征患者机械通气动脉血二氧化碳分压变异率与预后风险相关性[J/CD]. 中华肺部疾病杂志(电子版), 2025, 18(2): 226-230.
3
Grasselli G, Calfee CS, Camporota L, et al. ESICM guidelines on acute respiratory distress syndrome: definition, phenotyping and respiratory support strategies[J]. Intensive Care Med, 2023, 49(7): 727-759.
4
Burnham EL, Janssen WJ, Riches DW, et al. The fibroproliferative response in acute respiratory distress syndrome: mechanisms and clinical significance[J]. Eur Respir J, 2014, 43(1): 276-285.
5
Singh SJ, Baldwin MM, Daynes E, et al. Respiratory sequelae of COVID-19: pulmonary and extrapulmonary origins, and approaches to clinical care and rehabilitation[J]. Lancet Respir Med, 2023, 11(8): 709-725.
6
Wijsenbeek M, Cottin V. Spectrum of fibrotic lung diseases[J]. N Engl J Med, 2020, 383(10): 958-968.
7
Maher TM. Interstitial lung disease: a review[J]. JAMA, 2024, 331(19): 1655-1665.
8
Moss BJ, Ryter SW, Rosas IO. Pathogenic mechanisms underlying idiopathic pulmonary fibrosis[J]. Annu Rev Pathol, 2022, 17: 515-546.
9
Michalski JE, Kurche JS, Schwartz DA. From ARDS to pulmonary fibrosis: the next phase of the COVID-19 pandemic?[J] .Transl Res, 2022, 241: 13-24.
10
Ashbaugh DG, Bigelow DB, Petty TL, et al. Acute respiratory distress in adults[J]. Lancet, 1967, 2(7511): 319-323.
11
Al-Husinat L, Azzam S, Al Sharie S, et al. A narrative review on the future of ARDS: evolving definitions, pathophysiology, and tailored management [J]. Crit Care, 2025, 29(1): 88.
12
Matthay MA, Arabi Y, Arroliga AC, et al. A new global definition of acute respiratory distress syndrome[J]. Am J Respir Crit Care Med, 2024, 209(1): 37-47.
13
Krygier A, Szmajda-Krygier D, Swiechowski R, et al. Molecular pathogenesis of fibrosis, thrombosis and surfactant dysfunction in the lungs of severe COVID-19 patients [J]. Biomolecules, 2022, 12(12): 1845.
14
Gorman EA, O′Kane CM, McAuley DF. Acute respiratory distress syndrome in adults: diagnosis, outcomes, long-term sequelae, and management [J]. Lancet, 2022, 400(10358): 1157-1170.
15
Wendisch D, Dietrich O, Mari T, et al. SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis[J]. Cell, 2021, 184(26): 6243-6261.e27.
16
Thille AW, Esteban A, Fernández-Segoviano P, et al. Chronology of histological lesions in acute respiratory distress syndrome with diffuse alveolar damage: a prospective cohort study of clinical autopsies[J]. Lancet Respir Med, 2013, 1(5):395-401.
17
De Vos N, Bruyneel M, Roman A, et al. Accuracy study of angiotensin 1-7 composite index test to predict pulmonary fibrosis and guide treatment[J]. Clin Chim Acta, 2025, 564: 119926.
18
Gao L, Li X, Wang H, et al. Autotaxin levels in serum and bronchoalveolar lavage fluid are associated with inflammatory and fibrotic biomarkers and the clinical outcome in patients with acute respiratory distress syndrome[J]. J Intensive Care, 2021, 9(1): 44.
19
Marshall RP, Bellingan G, Webb S, et al. Fibroproliferation occurs early in the acute respiratory distress syndrome and impacts on outcome[J]. Am J Respir Crit Care Med, 2000, 162(5): 1783-1788.
20
Mouw JK, Ou G, Weaver VM. Extracellular matrix assembly: a multiscale deconstruction[J]. Nat Rev Mol Cell Biol, 2014, 15(12): 771-785.
21
Naba A. Mechanisms of assembly and remodelling of the extracellular matrix[J]. Nat Rev Mol Cell Biol, 2024, 25(11): 865-885.
[1] 谌莉, 冉永红, 傅仕艳, 李文润, 冉新泽, 郝玉徽. 放射性肺纤维化细胞和分子机制的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(03): 265-270.
[2] 郭瑞铭, 邱伟, 房付春. 单细胞RNA测序技术的发展及其在牙周炎研究中的应用与展望[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(02): 75-83.
[3] 赵才林, 向青, 钱航, 施雯, 邱凌霄, 王斌. 基于生物信息学解析急性肺损伤/急性呼吸窘迫综合征铁死亡枢纽基因及其与免疫分型的关系[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 503-509.
[4] 郭亚文, 胡巧, 黄朝旺, 张静, 王丹, 赵鹏, 陈晓龙, 胡明冬. 基于转录组学老年细菌性肺炎差异miRNAs表达的分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 521-526.
[5] 张丽丽, 韩志海, 张春阳, 陈韦, 康奕欣, 张燕, 孟激光, 丁毅伟, 丁静, 崔俊昌. 纤维化性结缔组织病相关间质性肺疾病进展的危险因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 434-441.
[6] 姚金平, 郭涛, 张逸辰, 常磊, 冯雨舟, 崔精, 陈建欢, 鲍传庆. 基于免疫微环境分析探讨FN1与DOCK2在结肠癌中的预后价值[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(04): 333-344.
[7] 王飞, 张凯, 姚占胜. 一种信号通路水平结直肠癌细胞系选择新视角探讨[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(02): 179-183.
[8] 章敏. 利用多组学技术筛选慢性肾脏病早期预警和预后标志物[J/OL]. 中华肾病研究电子杂志, 2025, 14(02): 120-120.
[9] 张睿敏, 董哲毅, 王倩, 陈香美. 肾小管间质纤维化生物标志物研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(02): 91-96.
[10] 张衡, 施歌, 张泽, 高振轩, 杨文强, 王琦, 张黎, 闫晋利. 基于血浆转录组学建立糖尿病周围神经病的生物标志物[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(02): 127-134.
[11] 张衡, 施歌, 张泽, 高振轩, 杨文强, 王琦, 张黎. 血浆5-HT相关基因表达与免疫细胞丰度在糖尿病周围神经病中的作用研究[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(02): 72-80.
[12] 王美琴, 潘海涛, 陈祥菲, 吴婉, 周昱和, 王砚青. S100B 蛋白在心血管疾病中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(03): 229-233.
[13] 王颖, 杨焱焱, 牛雯晓, 李梦凡, 张金彪. 非体位性阻塞性睡眠呼吸暂停与认知功能障碍的相关性研究[J/OL]. 中华临床医师杂志(电子版), 2025, 19(02): 108-116.
[14] 白霖果, 秦康杰, 郑杰, 李俊杰, 梅鸿, 刘鑫鑫, 覃松, 冯帮海, 余琨. 连翘酯苷A通过激活PPAR-γ抑制中性粒细胞胞外捕获网形成减轻脓毒症相关急性呼吸窘迫综合征[J/OL]. 中华卫生应急电子杂志, 2025, 11(03): 180-187.
[15] 郑锐滨, 赵象文. 肥胖与非肥胖人群血清代谢激素谱的差异分析[J/OL]. 中华肥胖与代谢病电子杂志, 2025, 11(02): 100-103.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?