1 |
Ware LB, Matthay MA. The acute respiratory distress syndrome[J]. N Engl J Med, 2000, 342(18): 1334-1349.
|
2 |
王小川,杜发旺,姚宇,等. 西格列汀通过上调TTF-1/SP-B通路对LPS诱导小鼠急性肺损伤的保护作用[J]. 西南医科大学学报,2023, 46(6): 495-499.
|
3 |
张鹏,史慢慢,马辉,等. 急性呼吸窘迫综合征患者机械通气动脉血二氧化碳分压变异率与预后风险相关性[J/CD]. 中华肺部疾病杂志(电子版), 2025, 18(2): 226-230.
|
4 |
Sun B, Lei M, Zhang J, et al. Acute lung injury caused by sepsis: how does it happen?[J]. Front Med (Lausanne), 2023, 10: 1289194.
|
5 |
Ning L, Shishi Z, Bo W, et al. Targeting immunometabolism against acute lung injury[J]. Clin Immunol, 2023, 249: 109289.
|
6 |
Dres M, Austin PC, Pham T, et al. Acute respiratory distress syndrome cases volume and ICU mortality in medical patients[J]. Crit Care Med, 2018, 46(1): e33-e40.
|
7 |
Tang J, Shi J, Han Z, et al. Application of macrophage subtype analysis in acute lung injury/acute respiratory distress syndrome[J]. Front Biosci (Landmark Ed), 2024, 29(12): 412.
|
8 |
Meegan JE, Rizzo AN, Schmidt EP, et al. Cellular mechanisms of lung injury: Current perspectives[J]. Clin Chest Med, 2024, 45(4): 821-833.
|
9 |
Xia S, Gu X, Wang G, et al. Regulated cell death of alveolar macrophages in acute lung inflammation: current knowledge and perspectives[J]. J Inflamm Res, 2024, 17: 11419-11436.
|
10 |
Ghimire L, Luo HR. Balancing immune response: SHP1 controls neutrophil activation in inflamed lungs[J]. J Clin Investigat, 2024, 134(24): e187056.
|
11 |
Li J, Ma W, Tang Z, et al. Macrophage driven pathogenesis in acute lung injury/acute respiratory disease syndrome: Harnessing natural products for therapeutic interventions (Review)[J]. Mol Med Rep, 2025, 31(1): 16.
|
12 |
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072.
|
13 |
顾晓凌,吴冠楠,宋勇. 核因子E2相关因子2(Nrf2)与铁死亡在脓毒症相关急性肺损伤中的研究进展[J/CD]. 中华肺部疾病杂志(电子版), 2024, 17(2): 324-328.
|
14 |
Liu X, Zhang J, Xie W. The role of ferroptosis in acute lung injury[J]. Mol Cell Biochem, 2022, 477(5): 1453-1461.
|
15 |
Qu M, Zhang H, Chen Z, et al. The role of ferroptosis in acute respiratory distress syndrome[J]. Front Med (Lausanne), 2021, 8: 651552.
|
16 |
Wen Y, Liu Y, Liu W, et al. Ferroptosis: a potential target for acute lung injury[J]. Inflamm Res, 2024, 73(10): 1615-1629.
|
17 |
Dong J, Liu W, Liu W, et al. Acute lung injury: a view from the perspective of necroptosis[J]. Inflamm Res, 2024, 73(6): 997-1018.
|
18 |
Xu Y, Qu X, Liang M, et al. Focus on the role of calcium signaling in ferroptosis: a potential therapeutic strategy for sepsis-induced acute lung injury[J]. Front Med (Lausanne), 2024, 11: 1457882.
|
19 |
Shen Y, He Y, Pan Y, et al. Role and mechanisms of autophagy, ferroptosis, and pyroptosis in sepsis-induced acute lung injury[J]. Front Pharmacol, 2024, 15: 1415145.
|
20 |
Yu T, Sun S. Role and mechanism of ferroptosis in acute lung injury[J]. Cell Cycle, 2023, 22(19): 2119-2129.
|
21 |
Chen Z, Tang H, Gan S, et al. Ferroptosis mediates airway epithelial E-cadherin dysfunction in LPS-induced acute lung injury[J]. Pulm Pharmacol Ther, 2024, 84: 102284.
|
22 |
Zhang Y, Zheng L, Deng H, et al. Electroacupuncture alleviates LPS-induced ARDS through α7 nicotinic acetylcholine receptor-mediated inhibition of ferroptosis[J]. Front Immunol, 2022, 13: 832432.
|
23 |
Li J, Deng SH, Li J, et al. Obacunone alleviates ferroptosis during lipopolysaccharide-induced acute lung injury by upregulating Nrf2-dependent antioxidant responses[J]. Cell Mol Biol Lett, 2022, 27(1): 29.
|
24 |
Ma A, Feng Z, Li Y, et al. Ferroptosis-related signature and immune infiltration characterization in acute lung injury/acute respiratory distress syndrome[J]. Respir Res, 2023, 24(1): 154.
|
25 |
Liu P, Feng Y, Li H, et al. Ferrostatin-1 alleviates lipopolysaccharide-induced acute lung injury via inhibiting ferroptosis[J]. Cell Mol Biol Letters, 2020, 25: 10.
|
26 |
Tenhunen R, Marver H S, Schmid R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase[J]. Proc Natl Acad Sci U S A, 1968, 61(2): 748-755.
|
27 |
Menon AV, Liu J, Tsai HP, et al. Excess heme upregulates heme oxygenase 1 and promotes cardiac ferroptosis in mice with sickle cell disease[J]. Blood, 2022, 139(6): 936-941.
|
28 |
Li Z, Gan H, Li S, et al. Bioinformatics identification and validation of ferroptosis-related key genes and therapeutic compounds in septic lung injury[J]. J Inflamm Res, 2024, 17: 9215-9230.
|
29 |
Chen X, Shen J, Jiang X, et al. Characterization of dipyridamole as a novel ferroptosis inhibitor and its therapeutic potential in acute respiratory distress syndrome management[J]. Theranostics, 2024, 14(18): 6947-6968.
|
30 |
Gawargi FI, Mishra PK. Regulation of cardiac ferroptosis in diabetic human heart failure: uncovering molecular pathways and key targets[J]. Cell Death Discov, 2024, 10(1): 268.
|
31 |
Wang Z, Liu T, Wang Z, et al. CYBB-mediated ferroptosis associated with immunosuppression in mycobacterium leprae-infected monocyte-derived macrophages[J]. J Invest Dermatol, 2024, 144(4): 874-887.
|
32 |
Pan S, Li Y, He H, et al. Identification of ferroptosis, necroptosis, and pyroptosis-associated genes in periodontitis-affected human periodontal tissue using integrated bioinformatic analysis[J]. Front Pharmacol, 2022, 13: 1098851.
|
33 |
Zhang C, Xue P, Ke J et al. Development of ferroptosis-associated ceRNA Network in periodontitis[J]. Int Dent J, 2023, 73(2): 186-194.
|
34 |
Cheng P, Li S, Chen H. Macrophages in lung injury, repair, and fibrosis[J]. Cells, 2021, 10(2): 436.
|
35 |
Song C, Li H, Li Y, et al. NETs promote ALI/ARDS inflammation by regulating alveolar macrophage polarization[J]. Exp Cell Res, 2019, 382(2): 111486.
|
36 |
Li J, Lu K, Sun F, et al. Panaxydol attenuates ferroptosis against LPS-induced acute lung injury in mice by Keap1-Nrf2/HO-1 pathway[J]. J Transl Med, 2021, 19(1): 96.
|
37 |
Park GC, Bang SY, Kim JM, et al. Inhibiting ferroptosis prevents the progression of steatotic liver disease in obese mice[J]. Antioxidants (Basel), 2024, 13(11): 1336.
|