切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2025, Vol. 18 ›› Issue (04) : 503 -509. doi: 10.3877/cma.j.issn.1674-6902.2025.04.002

论著

基于生物信息学解析急性肺损伤/急性呼吸窘迫综合征铁死亡枢纽基因及其与免疫分型的关系
赵才林, 向青, 钱航, 施雯, 邱凌霄, 王斌()   
  1. 400037 重庆,陆军(第三)军医大学第二附属医院呼吸与危重症医学科
  • 收稿日期:2025-02-27 出版日期:2025-08-25
  • 通信作者: 王斌
  • 基金资助:
    重庆市自然科学基金面上项目(cstc2021jcyjmsxmx1179)

Identification of ferroptosis-related hub genes and immune subtypes in acute lung injury/acute respiratory distress syndrome based on bioinformatics analysis

Cailin Zhao, Qing Xiang, Hang Qian, Wen Shi, Lingxiao Qiu, Bin Wang()   

  1. Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing 400037, China
  • Received:2025-02-27 Published:2025-08-25
  • Corresponding author: Bin Wang
引用本文:

赵才林, 向青, 钱航, 施雯, 邱凌霄, 王斌. 基于生物信息学解析急性肺损伤/急性呼吸窘迫综合征铁死亡枢纽基因及其与免疫分型的关系[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 503-509.

Cailin Zhao, Qing Xiang, Hang Qian, Wen Shi, Lingxiao Qiu, Bin Wang. Identification of ferroptosis-related hub genes and immune subtypes in acute lung injury/acute respiratory distress syndrome based on bioinformatics analysis[J/OL]. Chinese Journal of Lung Diseases(Electronic Edition), 2025, 18(04): 503-509.

目的

基于生物信息学筛选急性肺损伤(acute lung injury, ALI)/急性呼吸窘迫综合征(acute respiratory distress syndrome, ARDS)相关铁死亡枢纽基因,分析与免疫分型关系,为早期ALI/ARDS诊断和治疗提供新靶点。

方法

采用基因表达综合(gene expression omnibus, GEO)数据库下载GSE216943、GSE263867和GSE236215数据集,使用R语言软件分析差异表达基因(differentially expressed genes, DEGs),进行基因本体论(gene ontology, GO)、京都基因与基因组百科全书(Kyoto encyclopedia of genes and genomes, KEGG)通路分析。采用LASSO回归和随机森林算法筛选ALI/ARDS相关铁死亡枢纽基因。绘制受试者工作特征曲线(receiver operating characteristic curve, ROC)分析基因诊断价值,使用CIBERSORT分析免疫浸润。

结果

GSE216943中筛选出281个DEGs(39个下调,242个上调),GSE263867中筛选出969个DEGs(449个下调,520个上调)。两个数据集220个交集DEGs中32个下调,188个上调。GO分析显示,基因参与脂多糖反应、细胞因子信号、白细胞迁移等免疫和炎症相关过程。LASSO回归分析筛选出5个关键基因Cybb、Hmox1、Cp、Ⅱ1b、Fth1。随机森林分析筛选出6个关键基因Cybb、Lcn2、Il1b、Cxcl2、Hmox1、Timp1。韦恩图显示ALI/ARDS中3个铁死亡枢纽基因Cybb、Hmox1、Ⅱ1b。ROC曲线分析显示,Ⅱ1b、Hmox1和Cybb在GSE216943和GSE263867中曲线下面积(area under curve, AUC)为1。验证集GSE236215中Ⅱ1b和Hmox1的AUC为1,Cybb的AUC为0.969。豆荚图显示ALI/ARDS组中Ⅱ1b、Hmox1和Cybb表达升高。CIBERSORT算法分析11个ALI/ARDS样本与对照组免疫细胞组成差异显著。免疫相关性分析显示,初始B细胞、浆细胞、巨噬细胞M2、静息树突状细胞和静息肥大细胞等免疫细胞浸润水平与枢纽基因Ⅱ1b、Hmox1和Cybb呈负相关,记忆B细胞、巨噬细胞M0、巨噬细胞M1、活化肥大细胞和中性粒细胞与枢纽基因呈正相关。活化NK细胞和单核细胞与Ⅱ1b和Hmox1呈负相关,辅助T滤泡细胞与Cybb呈正相关。

结论

Cybb、Hmox1和Ⅱ1b为ALI/ARDS相关铁死亡枢纽基因,与巨噬细胞极化和T细胞反应相关,可为ALI/ARDS分子诊断和靶向治疗提供参考。

Objective

To identify key ferroptosis-related hub genes associated with acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), explore their relationship with immune response and inflammation, and validate their diagnostic efficacy, providing new targets for early diagnosis and treatment.

Methods

Gene expression datasets GSE216943, GSE263867, and GSE236215 were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were analyzed using R software, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. Ferroptosis-related genes were integrated to identify ALI/ARDS-associated hub genes, followed by LASSO regression and random forest algorithm analysis. Receiver operating characteristic (ROC) curves were used to evaluate the diagnostic efficacy of the genes, and immune infiltration was analyzed using CIBERSORT.

Results

In dataset GSE216943, 281 DEGs were identified (39 downregulated, 242 upregulated), while GSE263867 revealed 969 DEGs (449 downregulated, 520 upregulated). There were 220 intersecting DEGs between the two datasets, comprising 32 downregulated and 188 upregulated genes. GO analysis indicated involvement in immune and inflammatory processes such as lipopolysaccharide response, cytokine signaling, and leukocyte migration. LASSO regression identified 5 key genes: Cybb, Hmox1, Cp, Ⅱ1b, and Fth1. Random forest analysis highlighted 6 key genes: Cybb, Lcn2, Ⅱ1b, Cxcl2, Hmox1, and Timp1. Venn diagram illustrated Cybb, Hmox1, and Ⅱ1b as central hub genes in ALI/ARDS. ROC curve analysis showed AUCs of 1 for Ⅱ1b, Hmox1, and Cybb in both GSE216943 and GSE263867. Validation set GSE236215 demonstrated AUCs of 1 for Ⅱ1b and Hmox1, and 0.969 for Cybb. Beanplot depicted elevated expression of Ⅱ1b, Hmox1, and Cybb in the ALI/ARDS group. The CIBERSORT algorithm revealed significant differences in immune cell composition between 11 ALI/ARDS and 11 control samples. Immune correlation analysis indicated negative correlations of memory B cells, M2 macrophages, resting dendritic cells, and resting mast cells with hub genes Ⅱ1b, Hmox1, and Cybb, while positive correlations were observed with naive B cells, M0 macrophages, M1 macrophages, activated mast cells, and neutrophils. Activated NK cells and monocytes showed negative correlations with Ⅱ1b and Hmox1, while follicular helper T cells positively correlated with Cybb.

Conclusion

This study identifies Cybb, Hmox1, and Ⅱ1b as pivotal ferroptosis-related hub genes in ALI/ARDS. These genes are closely associated with macrophage polarization and T cell responses, may serve as promising biomarkers and therapeutic targets for the molecular diagnosis and treatment of ALI/ARDS.

图1 GSE216943和GSE263867数据集中DEGs。图A、B分别为GSE216943和GSE263867数据集中DEGs火山图,图中每一个圆圈表示一个基因,红色表上调基因,蓝色表示下调基因,灰色表示无显著意义基因;图C为交集DEGs的韦恩图;图D为DEGs参与多个生物过程、细胞组分和分子功能的GO分析图;图E为KEGG通路分析图注:positive regulation of response to external stimulus为外部刺激反应正调控;Leukocyte migration为白细胞迁移;response to molecule of bacterial origin为细菌来源分子反应;cytokine-mediated signaling pathway为细胞因子介导的信号通路;response to lipopolysaccharide为对脂多糖的反应;collagen-containing extracellular matrix为含胶原蛋白的细胞外基质;membrane microdomain为膜微域;membrane raft为膜筏;endosome membrane为内体膜;NADPH oxidase complex为NADPH氧化酶复合物;cytokine activity为细胞因子活性;G protein-coupled receptor binding为G蛋白偶联受体结合;cytokine receptor binding为细胞因子受体结合;peptidase regulator activity为肽酶调节活性;chemokine activity为趋化因子活性;Lipid and atherosclerosis为脂质与动脉粥样硬化;chemokine signaling pathway为趋化因子信号通路;NOD-like receptor signaling pathway为NOD样受体信号通路;TNF signaling pathway为肿瘤坏死因子信号通路;osteoclast differentiation为成骨细胞分化;cytokine-cytokine receptor interaction为细胞因子-细胞因子受体相互作用;coronavirus为冠状病毒;phagosome为吞噬体;viral protein interaction with cytokine and cytokine receptor为病毒蛋白与细胞因子及其受体的相互作用;IL-17 signaling pathway为IL-17信号通路
图2 铁死亡枢纽基因筛选与分析。图A为"FerrDb V2"筛选铁死亡基因与DEGs交集图;图B为基于STRING数据库构建的PPI网络图;图C、D为筛选关键基因的LASSO回归分析图;E为筛选关键基因的随机森林分析图;图F为ALI/ARDS铁死亡枢纽基因韦恩图注:Cybb为细胞色素b-245重链;Lcn2为脂质运载蛋白2;Ⅱ1b为白细胞介素-1β;Cxcl2为Cxc趋化因子配体2;Hmox1为血红素加氧酶1;Fth1为铁蛋白重链1;Tnfaip3为肿瘤坏死因子α诱导蛋白3;Slc7a11为溶质载体家族7成员11;Nr1d1为核受体亚家族1 D组成员1;Slc39a14为溶质载体家族39成员14;Cp为铜蓝蛋白
图3 枢纽基因诊断价值与验证。图A、B分别为枢纽基因在GSE216943和GSE263867中诊断价值的ROC图;图C为枢纽基因在验证集GSE236215中诊断价值的ROC图;图D为GSE236215数据集ALI/ARDS组中Ⅱ1b、Hmox1和Cybb基因表达的豆荚图注:Cybb为细胞色素b-245重链;Lcn2为脂质运载蛋白2;Ⅱ1b为白细胞介素-1β;Cxcl2为Cxc趋化因子配体2;Hmox1为血红素加氧酶1;Fth1为铁蛋白重链1;Tnfaip3为肿瘤坏死因子α诱导蛋白3;Slc7a11为溶质载体家族7成员11;Nr1d1为核受体亚家族1D组成员1;Slc39a14为溶质载体家族39成员14;Cp为铜蓝蛋白;*为P<0.05;**为P<0.01;***为P<0.001
1
Ware LB, Matthay MA. The acute respiratory distress syndrome[J]. N Engl J Med, 2000, 342(18): 1334-1349.
2
王小川,杜发旺,姚宇,等. 西格列汀通过上调TTF-1/SP-B通路对LPS诱导小鼠急性肺损伤的保护作用[J]. 西南医科大学学报2023, 46(6): 495-499.
3
张鹏,史慢慢,马辉,等. 急性呼吸窘迫综合征患者机械通气动脉血二氧化碳分压变异率与预后风险相关性[J/CD]. 中华肺部疾病杂志(电子版), 2025, 18(2): 226-230.
4
Sun B, Lei M, Zhang J, et al. Acute lung injury caused by sepsis: how does it happen?[J]. Front Med (Lausanne), 2023, 10: 1289194.
5
Ning L, Shishi Z, Bo W, et al. Targeting immunometabolism against acute lung injury[J]. Clin Immunol, 2023, 249: 109289.
6
Dres M, Austin PC, Pham T, et al. Acute respiratory distress syndrome cases volume and ICU mortality in medical patients[J]. Crit Care Med, 2018, 46(1): e33-e40.
7
Tang J, Shi J, Han Z, et al. Application of macrophage subtype analysis in acute lung injury/acute respiratory distress syndrome[J]. Front Biosci (Landmark Ed), 2024, 29(12): 412.
8
Meegan JE, Rizzo AN, Schmidt EP, et al. Cellular mechanisms of lung injury: Current perspectives[J]. Clin Chest Med, 2024, 45(4): 821-833.
9
Xia S, Gu X, Wang G, et al. Regulated cell death of alveolar macrophages in acute lung inflammation: current knowledge and perspectives[J]. J Inflamm Res, 2024, 17: 11419-11436.
10
Ghimire L, Luo HR. Balancing immune response: SHP1 controls neutrophil activation in inflamed lungs[J]. J Clin Investigat, 2024, 134(24): e187056.
11
Li J, Ma W, Tang Z, et al. Macrophage driven pathogenesis in acute lung injury/acute respiratory disease syndrome: Harnessing natural products for therapeutic interventions (Review)[J]. Mol Med Rep, 2025, 31(1): 16.
12
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072.
13
顾晓凌,吴冠楠,宋勇. 核因子E2相关因子2(Nrf2)与铁死亡在脓毒症相关急性肺损伤中的研究进展[J/CD]. 中华肺部疾病杂志(电子版), 2024, 17(2): 324-328.
14
Liu X, Zhang J, Xie W. The role of ferroptosis in acute lung injury[J]. Mol Cell Biochem, 2022, 477(5): 1453-1461.
15
Qu M, Zhang H, Chen Z, et al. The role of ferroptosis in acute respiratory distress syndrome[J]. Front Med (Lausanne), 2021, 8: 651552.
16
Wen Y, Liu Y, Liu W, et al. Ferroptosis: a potential target for acute lung injury[J]. Inflamm Res, 2024, 73(10): 1615-1629.
17
Dong J, Liu W, Liu W, et al. Acute lung injury: a view from the perspective of necroptosis[J]. Inflamm Res, 2024, 73(6): 997-1018.
18
Xu Y, Qu X, Liang M, et al. Focus on the role of calcium signaling in ferroptosis: a potential therapeutic strategy for sepsis-induced acute lung injury[J]. Front Med (Lausanne), 2024, 11: 1457882.
19
Shen Y, He Y, Pan Y, et al. Role and mechanisms of autophagy, ferroptosis, and pyroptosis in sepsis-induced acute lung injury[J]. Front Pharmacol, 2024, 15: 1415145.
20
Yu T, Sun S. Role and mechanism of ferroptosis in acute lung injury[J]. Cell Cycle, 2023, 22(19): 2119-2129.
21
Chen Z, Tang H, Gan S, et al. Ferroptosis mediates airway epithelial E-cadherin dysfunction in LPS-induced acute lung injury[J]. Pulm Pharmacol Ther, 2024, 84: 102284.
22
Zhang Y, Zheng L, Deng H, et al. Electroacupuncture alleviates LPS-induced ARDS through α7 nicotinic acetylcholine receptor-mediated inhibition of ferroptosis[J]. Front Immunol, 2022, 13: 832432.
23
Li J, Deng SH, Li J, et al. Obacunone alleviates ferroptosis during lipopolysaccharide-induced acute lung injury by upregulating Nrf2-dependent antioxidant responses[J]. Cell Mol Biol Lett, 2022, 27(1): 29.
24
Ma A, Feng Z, Li Y, et al. Ferroptosis-related signature and immune infiltration characterization in acute lung injury/acute respiratory distress syndrome[J]. Respir Res, 2023, 24(1): 154.
25
Liu P, Feng Y, Li H, et al. Ferrostatin-1 alleviates lipopolysaccharide-induced acute lung injury via inhibiting ferroptosis[J]. Cell Mol Biol Letters, 2020, 25: 10.
26
Tenhunen R, Marver H S, Schmid R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase[J]. Proc Natl Acad Sci U S A, 1968, 61(2): 748-755.
27
Menon AV, Liu J, Tsai HP, et al. Excess heme upregulates heme oxygenase 1 and promotes cardiac ferroptosis in mice with sickle cell disease[J]. Blood, 2022, 139(6): 936-941.
28
Li Z, Gan H, Li S, et al. Bioinformatics identification and validation of ferroptosis-related key genes and therapeutic compounds in septic lung injury[J]. J Inflamm Res, 2024, 17: 9215-9230.
29
Chen X, Shen J, Jiang X, et al. Characterization of dipyridamole as a novel ferroptosis inhibitor and its therapeutic potential in acute respiratory distress syndrome management[J]. Theranostics, 2024, 14(18): 6947-6968.
30
Gawargi FI, Mishra PK. Regulation of cardiac ferroptosis in diabetic human heart failure: uncovering molecular pathways and key targets[J]. Cell Death Discov, 2024, 10(1): 268.
31
Wang Z, Liu T, Wang Z, et al. CYBB-mediated ferroptosis associated with immunosuppression in mycobacterium leprae-infected monocyte-derived macrophages[J]. J Invest Dermatol, 2024, 144(4): 874-887.
32
Pan S, Li Y, He H, et al. Identification of ferroptosis, necroptosis, and pyroptosis-associated genes in periodontitis-affected human periodontal tissue using integrated bioinformatic analysis[J]. Front Pharmacol, 2022, 13: 1098851.
33
Zhang C, Xue P, Ke J et al. Development of ferroptosis-associated ceRNA Network in periodontitis[J]. Int Dent J, 2023, 73(2): 186-194.
34
Cheng P, Li S, Chen H. Macrophages in lung injury, repair, and fibrosis[J]. Cells, 2021, 10(2): 436.
35
Song C, Li H, Li Y, et al. NETs promote ALI/ARDS inflammation by regulating alveolar macrophage polarization[J]. Exp Cell Res, 2019, 382(2): 111486.
36
Li J, Lu K, Sun F, et al. Panaxydol attenuates ferroptosis against LPS-induced acute lung injury in mice by Keap1-Nrf2/HO-1 pathway[J]. J Transl Med, 2021, 19(1): 96.
37
Park GC, Bang SY, Kim JM, et al. Inhibiting ferroptosis prevents the progression of steatotic liver disease in obese mice[J]. Antioxidants (Basel), 2024, 13(11): 1336.
[1] 李乐桐, 林加曼, 王强. 1-磷酸鞘氨醇受体1 在乳腺癌患者中的表达及其对预后和免疫浸润的影响[J/OL]. 中华危重症医学杂志(电子版), 2025, 18(02): 105-114.
[2] 刘新锋, 邓煜麟, 刘孝德, 闫道先, 石双胜, 黄德成, 刘悦, 刘学斌, 许朋, 董传江. 肥大细胞免疫球蛋白样受体1在肾透明细胞癌中的表达及临床意义[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 483-491.
[3] 杨春, 游洋伟, 周宇, 林泽超, 刘亮, 袁堃. 白细胞介素-10 调节辅助性T 细胞17/调节性T 细胞对小鼠输血相关急性肺损伤的作用研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 355-361.
[4] 张鹏, 史慢慢, 马辉, 吴佼佼, 赵暾, 张颖彬. 急性呼吸窘迫综合征患者机械通气动脉血二氧化碳分压变异率与预后风险相关性[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 226-230.
[5] 王鹏森, 吴慧锋, 温建芳, 韦阳, 董龙浩, 刘博强, 李占, 石春锋, 雷晓栋, 吴雄雄. 脓毒症并发急性肺损伤血清miR-146a 的表达及与预后相关性分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 241-245.
[6] 马秋双, 杨茗涵, 王耀林, 兰莹莹, 刘子腾, 张金库. 非小细胞肺癌中血清外泌体人源微小RNA-195-5p 的表达及临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 261-265.
[7] 郑希彦, 吴润鹏, 杜飞, 谢玉芬, 王平根, 张广权, 翟航, 何函樨, 李瑞曦. 基于生信分析SLC29A3 在肝癌中的表达及临床意义[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(02): 290-295.
[8] 迟云霞, 吕强, 郑颖, 朱晗玉, 蔡广研, 陈香美. 肾脏病学研究生生物信息学教学的思考与实践[J/OL]. 中华肾病研究电子杂志, 2025, 14(02): 115-117.
[9] 李祖涛, 阿布都艾尼·热吾提, 车立新, 徐江波, 赵清斌. 应用生物信息学技术鉴定并验证绝经后骨质疏松症中靶点基因[J/OL]. 中华老年骨科与康复电子杂志, 2025, 11(04): 193-200.
[10] 王金龙, 邵敏. 呼吸支持技术:2024 年度进展与展望[J/OL]. 中华重症医学电子杂志, 2025, 11(02): 117-124.
[11] 张建成, 谢冰, 尚游. 细胞迁移:脓毒症肠-肺交互作用的关键机制[J/OL]. 中华重症医学电子杂志, 2025, 11(02): 163-166.
[12] 黄丽丽, 杨毅, 邱海波. mtDNA 在急性呼吸窘迫综合征肺损伤中的作用研究进展[J/OL]. 中华重症医学电子杂志, 2025, 11(02): 204-209.
[13] 夏炎, 朱帅帅, 张岩松. 基于生物信息学和机器学习探究前庭神经鞘瘤生物标志物在免疫微环境中的相关功能[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(03): 171-179.
[14] 邓绮玲, 庄杰兰, 董家铭, 苏镜. 基于生物信息学分析原发性痛风性关节炎与高尿酸血症的关键基因及相关通路[J/OL]. 中华临床实验室管理电子杂志, 2025, 13(02): 97-105.
[15] 白霖果, 秦康杰, 郑杰, 李俊杰, 梅鸿, 刘鑫鑫, 覃松, 冯帮海, 余琨. 连翘酯苷A通过激活PPAR-γ抑制中性粒细胞胞外捕获网形成减轻脓毒症相关急性呼吸窘迫综合征[J/OL]. 中华卫生应急电子杂志, 2025, 11(03): 180-187.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?