1 |
Karunarathna HMTK, Perera RAPM, Fang VJ, et al. Serum anti-neuraminidase antibody responses in human influenza A(H1N1)pdm09 virus infections[J]. Emerg Microbes Infect, 2019, 8(1): 404-412.
|
2 |
谢 云,王瑞兰. 流感季节重症肺炎救治观念[J/CD]. 中华肺部疾病杂志(电子版), 2018, 11(3): 261-264.
|
3 |
Baghdadi M, Ishikawa K, Nakanishi S, et al. A role for IL-34 in osteolytic disease of multiple myeloma[J]. Blood Adv, 2019, 3(4): 541-551.
|
4 |
梁海梅,欧宗兴,齐见旭,等. 慢性阻塞性肺疾病急性加重期患者血清IL-34水平的变化及临床意义分析[J]. 临床肺科杂志,2021, 26(9): 1431-1433.
|
5 |
Saleh NY, Ibrahem RAL, Saleh AAH, et al. Surfactant protein D: a predictor for severity of community-acquired pneumonia in children[J]. Pediatr Res, 2022, 91(3): 665-671.
|
6 |
刘祖平. CXCL17在肿瘤中表达意义及功能的研究进展[J]. 西南医科大学学报,2018, 41(5): 462-466.
|
7 |
国家卫生和计划生育委员会,国家中医药管理局. 流行性感冒诊疗方案(2018年版)[J]. 中国感染控制杂志,2018, 17(2): 181-184.
|
8 |
樊高薇,薛敬东,李警卓. 基于JAK/STAT信号通路探讨连花清瘟颗粒对甲型H1N1流感病毒性肺炎小鼠肺组织的保护作用及机制[J]. 检验医学与临床,2022, 19(9): 1153-1157, 1162.
|
9 |
Behillil S, May F, Fourati S, et al. Oseltamivir resistance in severe influenza A(H1N1)pdm09 pneumonia and acute respiratory distress syndrome: A french multicenter observational cohort study[J]. Clin Infect Dis, 2020, 71(4): 1089-1091.
|
10 |
Eldaboosy S, Almoosa Z, Saad M, et al. Comparison between physiological scores SIPF, CURB-65, and APACHE Ⅱ as predictors of prognosis and mortality in hospitalized patients with COVID-19 pneumonia: A multicenter study, Saudi Arabia[J]. Infect Drug Resist, 2022, 15: 7619-7630.
|
11 |
Hoşgün D, Aydemir S. Factors affecting 90-day mortality in community and hospital acquired pneumonia patients with or without acute kidney injury[J]. Afr Health Sci, 2022, 22(3): 567-577.
|
12 |
Dépret F, Riaud C, Rouaux J, et al. Characteristics and prognosis of Herpesviridae-related pneumonia in critically ill burn patients[J]. Burns, 2022, 48(5): 1155-1165.
|
13 |
Park HE, Oh H, Baek JH. Interleukin-34-regulated T-cell responses in rheumatoid arthritis[J]. Front Med (Lausanne), 2022, 9: 1078350.
|
14 |
Monteleone G, Franzè E, Troncone E, et al. Interleukin-34 mediates cross-talk between stromal cells and immune cells in the Gut[J]. Front Immunol, 2022, 13: 873332.
|
15 |
Alshaebi F, Safi M, Algabri YA, et al. Interleukin-34 and immune checkpoint inhibitors: Unified weapons against cancer[J]. Front Oncol, 2023, 13: 1099696.
|
16 |
Udomsinprasert W, Panon K, Preechanukul S, et al. Diagnostic value of interleukin-34 as a novel biomarker for severity of knee osteoarthritis[J]. Cartilage, 2021, 13(2_suppl): 1174S-1184S.
|
17 |
张 津,杨敬平,徐喜媛,等. 以ALI为表现的脓毒症患者外周血PBMC TLR4mRNA及IL-34、IL-36的表达[J]. 临床肺科杂志,2016, 21(7): 1172-1176.
|
18 |
Xu B, Lin X, Gong Y, et al. Interleukin-34: an important modifier in the pathogenesis of influenza pneumonia[J]. Crit Care, 2021, 25(1): 274.
|
19 |
Abdel-Razek O, Audlin J, Poe DS, et al. Surfactant proteins and innate immunity of otitis media[J]. Innate Immun, 2022, 28(7-8): 213-223.
|
20 |
Watson A, Madsen J, Clark HW. SP-A and SP-D: Dual functioning immune molecules with antiviral and immunomodulatory properties[J]. Front Immunol, 2021, 11: 622598.
|
21 |
Saleh NY, Ibrahem RAL, Saleh AAH, et al. Surfactant protein D: a predictor for severity of community-acquired pneumonia in children[J]. Pediatr Res, 2022, 91(3): 665-671.
|
22 |
Chakrabarti A, Nguyen A, Newhams MM, et al. Surfactant protein D is a biomarker of influenza-related pediatric lung injury[J]. Pediatr Pulmonol, 2022, 57(2): 519-528.
|
23 |
Choreño-Parra JA, Jiménez-Álvarez LA, Ramírez-Martínez G, et al. Expression of surfactant protein D distinguishes severe pandemic influenza A(H1N1) from coronavirus disease 2019[J]. J Infect Dis, 2021, 224(1): 21-30.
|
24 |
Xiao S, Xie W, Zhou L. Mucosal chemokine CXCL17: What is known and not known[J]. Scand J Immunol, 2021, 93(2): e12965.
|
25 |
Sun C, Shen H, Cai H, et al. Intestinal guard: Human CXCL17 modulates protective response against mycotoxins and CXCL17-mimetic peptides development[J]. Biochem Pharmacol, 2021, 188: 114586.
|
26 |
郭雅洁,欧周罗,邵志敏. 新型趋化因子CXCL17[J]. 生命的化学,2013, 33(6): 657-661.
|
27 |
José A, Shyamala T, Joaquín Z, et al. The protective and pathogenic roles of CXCL17 in human health and disease: Potential in respiratory medicine[J]. Cytokine Growth Factor Rev, 2020, 53: 53-62.
|
28 |
Zhang K, Liang Y, Feng Y, et al. Decreased epithelial and sputum miR-221-3p associates with airway eosinophilic inflammation and CXCL17 expression in asthma[J]. Am J Physiol Lung Cell Mol Physiol, 2018, 315(2): L253-L264.
|
29 |
Ardain A,Domingo GR, Das S, et al. Group 3 innate lymphoid cells mediate early protective immunity against tuberculosis[J]. Nature, 2019, 570(7762): 528-532.
|
30 |
Jose A, Luis A, Gustavo R, et al. CXCL17 is a specific diagnostic biomarker for severe pandemic influenza A(H1N1) that predicts poor clinical outcome[J]. Front Immunol, 2021, 12: 633297.
|