| 1 |
Henschke C, Huber R, Jiang L, et al. Perspective on management of low-dose computed tomography findings on low-dose computed tomography examinations for lung cancer screening. from the international association for the study of lung cancer early detection and screening committee[J]. J Thorac Oncol, 2024, 19(4): 565-580.
|
| 2 |
Chen D, Yang L, Zhang W, et al. Prevalence and management of pulmonary nodules: a systematic review and meta-analysis[J]. J Thorac Dis, 2024, 16(7): 4619-4632.
|
| 3 |
Tang FH, Wong HYT, Tsang PSW, et al. Recent advancements in lung cancer research: a narrative review[J]. Translational Lung Cancer Research, 2025, 14(3): 975.
|
| 4 |
Ji Y, Zhang Y, Liu S, et al. The epidemiological landscape of lung cancer: current status, temporal trend and future projections based on the latest estimates from GLOBOCAN 2022[J]. J Natl Cancer Cent, 2025, 5(3): 278-286.
|
| 5 |
刘嘉宁,齐琳琳,陈佳琪,等. CT放射组学对亚厘米实性肺结节良恶性鉴别的应用价值[J]. 中国辐射卫生,2024, 33(3): 340-345.
|
| 6 |
Wu Q, Zhou L, Tang W, et al. Inter-observer consistency on subsolid nodule follow-up recommendation based on National Comprehensive Cancer Network (NCCN) guidelines in low-dose computed tomography (LDCT) lung cancer screening[J]. Quant Imaging Med Surg, 2024, 14(9): 6543-6555.
|
| 7 |
Wen M, Zheng Q, Ji X, et al. Precise diagnosis and prognosis assessment of malignant lung nodules: a narrative review[J]. Journal of Thoracic Disease, 2024, 16(11): 7999.
|
| 8 |
Mazzone PJ, Lam L. Evaluating the patient with a pulmonary nodule:a review[J]. Jama, 2022, 327(3): 264-273.
|
| 9 |
Adams SJ, Madtes DK, Burbridge B, et al. Clinical impact and generalizability of a computer-assisted diagnostic tool to risk-stratify lung nodules with CT[J]. J Am Coll Radiol, 2023, 20(2): 232-242.
|
| 10 |
Chen D, Shao L, Dong Y, et al. Challenges and current practices in the management of pulmonary nodules in China: a mixed methods study[J]. J Thorac Dis, 2025, 17(5): 3210-3222.
|
| 11 |
Digby GC, Lam S, Tammemägi M C, et al. Recommendations to Improve Management of Incidental Pulmonary Nodules in Canada: Expert Panel Consensus[J]. Canadian Association of Radiologists Journal, 2024, 75(4): 895-906.
|
| 12 |
解良婕,王剑,阳韬. 采用AI的CT影像特征对肺结节良恶性鉴别的价值分析[J/OL]. 中华肺部疾病杂志(电子版),2024, 17(2): 242-246.
|
| 13 |
黄文君,李巧巧,敬文斌,等. 不同WHO肺癌病理分类下人工智能对肺结节良恶性的诊断效能[J]. 临床放射学杂志,2025, 44(1): 76-82.
|
| 14 |
Zhang R, Wei Y, Wang D, et al. Deep learning for malignancy risk estimation of incidental sub-centimeter pulmonary nodules on CT images[J]. European Radiology, 2024, 34(7): 4218-4229.
|
| 15 |
杨丽,钱桂生. 肺结节临床精准诊断的新理念[J/OL]. 中华肺部疾病杂志(电子版), 2022, 15(1): 1-5.
|
| 16 |
范卫杰,张冬. 影像组学及深度学习在肺结节良恶性鉴别诊断中的新理念[J/OL]. 中华肺部疾病杂志(电子版), 2021, 14(5): 549-553.
|
| 17 |
Hu B, Ren W, Feng Z, et al. Correlation between CT imaging characteristics and pathological diagnosis for subcentimeter pulmonary nodules[J]. Thorac Cancer, 2022, 13(7): 1067-1075.
|
| 18 |
Cui SL, Qi LL, Liu JN, et al. A prediction model based on computed tomography characteristics for identifying malignant from benign sub-centimeter solid pulmonary nodules[J]. J Thorac Dis, 2024, 16(7): 4238-4249.
|
| 19 |
丛玉林,徐小虎,沈春林,等. 基于CT特征构建预测肺结节良恶性的机器学习模型[J]. 中国医学物理学杂志,2024, 41(10): 1315-1320.
|
| 20 |
He XQ, Huang XT, Luo TY, et al. The differential computed tomography features between small benign and malignant solid solitary pulmonary nodules with different sizes[J]. Quantitative Imaging in Medicine and Surgery, 2024, 14(2): 1348.
|
| 21 |
Liu J, Qi L, Wang Y, et al. Development of a combined radiomics and CT feature-based model for differentiating malignant from benign subcentimeter solid pulmonary nodules[J]. Eur Radiol Exp, 2024, 8(1): 8.
|
| 22 |
Mazzone PJ, Lam L. Evaluating the patient with a pulmonary nodule:a review[J]. Jama, 2022, 327(3): 264-273.
|
| 23 |
Wang R, Qi T. Creation of nomograms that combine clinical, CT, and radiographic features to separate benign from malignant diseases using spiculation or (and) lobulation signs[J]. Current Problems in Diagnostic Radiology, 2025, 54(4): 443-448.
|
| 24 |
Wen Y, Wu W, Liufu Y, et al. Differentiation of granulomatous nodules with lobulation and spiculation signs from solid lung adenocarcinomas using a CT deep learning model[J]. BMC cancer, 2024, 24(1): 875.
|
| 25 |
Li M, Zhu L, Lv Y, et al. Thin-slice computed tomography enables to classify pulmonary subsolid nodules into pre-invasive lesion/minimally invasive adenocarcinoma and invasive adenocarcinoma: a retrospective study[J]. Scientific Reports, 2023, 13(1): 6999.
|
| 26 |
Raad RA, Garrana S, Moreira AL, et al. Imaging and management of subsolid lung nodules[J]. Radiologic Clinics, 2025, 63(4): 517-535.
|
| 27 |
Zhang CR, Wang Q, Feng H, et al. Computed-tomography-based radiomic nomogram for predicting the risk of indeterminate small (5-20 mm) solid pulmonary nodules[J]. Diagn Interv Radiol, 2023, 29(2): 283-290.
|
| 28 |
Shang H, Li J, Jiao T, et al. Differentiation of lung metastases originated from different primary tumors using radiomics features based on CT imaging[J]. Academic Radiology, 2023, 30(1): 40-46.
|
| 29 |
Wu Y, Xia S, Liang Z, et al. Artificial intelligence in COPD CT images: identification, staging, and quantitation[J]. Respiratory Research, 2024, 25(1): 319.
|
| 30 |
Althubiti SA, Paul S, Mohanty R, et al. Ensemble learning framework with GLCM texture extraction for early detection of lung cancer on CT images[J]. Computational and Mathematical Methods in Medicine, 2022, 2022(1): 2733965.
|
| 31 |
Raptis S, Ilioudis C, Theodorou K. Uncovering the diagnostic power of radiomic feature significance in automated lung cancer detection: an integrative analysis of texture, shape, and intensity contributions[J]. BioMedInformatics, 2024, 4(4): 2400-2425.
|
| 32 |
Saihood A, Karshenas H, Nilchi ARN. Deep fusion of gray level co-occurrence matrices for lung nodule classification[J]. Plos one, 2022, 17(9): e0274516.
|