| 1 |
喻星豪,黄娜,刘罡. 肺癌的靶向与免疫联合治疗的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(2): 330-333.
|
| 2 |
Thai AA, Solomon BJ, Sequist LV, et al. Lung cancer[J]. Lancet, 2021, 398(10299): 535-554.
|
| 3 |
Patel SA, Weiss J. Advances in the Treatment of non-small cell lung cancer: Immunotherapy[J]. Clin Chest Med, 2020, 41(2): 237-247.
|
| 4 |
Liu X, Yu Y, Wang M, et al. The mortality of lung cancer attributable to smoking among adults in China and the United States during 1990-2017[J]. Cancer Commun (Lond), 2020, 40(11): 611-619.
|
| 5 |
Huo A, Xiong X. PAICS as a potential target for cancer therapy linking purine biosynthesis to cancer progression [J]. Life Sci, 2023, 331: 122070.
|
| 6 |
Lang L, Tao J, Yang C, et al. Tumor suppressive role of microRNA-4731-5p in breast cancer through reduction of PAICS-induced FAK phosphorylation [J]. Cell Death Discov, 2022, 8(1): 154.
|
| 7 |
Du B, Zhang Z, Di W, et al. PAICS is related to glioma grade and can promote glioma growth and migration [J]. J Cell Mol Med, 2021, 25(16): 7720-7733.
|
| 8 |
Kobayashi Y, Kumamoto K, Okayama H, et al. Downregulation of PAICS due to loss of chromosome 4q is associated with poor survival in stage Ⅲ colorectal cancer [J]. PLoS One, 2021, 16(2): e0247169.
|
| 9 |
Xu R, Han F, Zhao Y, et al. Role of CENPL, DARS2, and PAICS in determining the prognosis of patients with lung adenocarcinoma [J]. Transl Lung Cancer Res, 2024, 13(10): 2729-2745.
|
| 10 |
Raman P, Zimmerman S, Rathi KS, et al. A comparison of survival analysis methods for cancer gene expression RNA-Sequencing data [J]. Cancer Genet, 2019, 235-236: 1-12.
|
| 11 |
Tang Z, Li C, Kang B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses [J]. Nucleic Acids Res, 2017, 45(W1): W98-W102.
|
| 12 |
Gyorffy B. Transcriptome-level discovery of survival-associated biomarkers and therapy targets in non-small-cell lung cancer[J]. Br J Pharmacol, 2024, 181(3): 362-374.
|
| 13 |
Tran DH, Kim D, Kesavan R, et al. De novo and salvage purine synthesis pathways across tissues and tumors [J]. Cell, 2024, 187(14): 3602-3618.
|
| 14 |
Barfeld SJ, Fazli L, Persson M, et al. Myc-dependent purine biosynthesis affects nucleolar stress and therapy response in prostate cancer[J]. Oncotarget, 2015, 6(14): 12587-12602.
|
| 15 |
Chakravarthi B, Rodriguez Pena MDC, Agarwal S, et al. A role for de novo purine metabolic enzyme PAICS in bladder cancer progression [J]. Neoplasia, 2018, 20(9): 894-904.
|
| 16 |
Yamauchi T, Miyawaki K, Semba Y, et al. Targeting leukemia-specific dependence on the de novo purine synthesis pathway [J]. Leukemia, 2022, 36(2): 383-393.
|
| 17 |
Goswami MT, Chen G, Chakravarthi BV, et al. Role and regulation of coordinately expressed de novo purine biosynthetic enzymes PPAT and PAICS in lung cancer [J]. Oncotarget, 2015, 6(27): 23445-23461.
|
| 18 |
Aluksanasuwan S, Somsuan K, Ngoenkam J, et al. Knockdown of heat shock protein family D member 1 (HSPD1) in lung cancer cell altered secretome profile and cancer-associated fibroblast induction[J]. Biochim Biophys Acta Mol Cell Res, 2024, 1871(5): 119736.
|
| 19 |
Sun H, Zhang H, Yan Y, et al. NCAPG promotes the oncogenesis and progression of non-small cell lung cancer cells through upregulating LGALS1 expression[J]. Mol Cancer, 2022, 21(1): 55.
|
| 20 |
Feng YY, Liu CH, Xue Y, et al. MicroRNA-147b promotes lung adenocarcinoma cell aggressiveness through negatively regulating microfibril-associated glycoprotein 4 (MFAP4) and affects prognosis of lung adenocarcinoma patients [J]. Gene, 2020, 730: 144316.
|
| 21 |
Altorkin K, Markowitz GJ, Gao D, et al. The lung microenvironment:an important regulator of tumour growth and metastasis[J]. Nat Rev Cancer, 2019, 19(1): 9-31.
|
| 22 |
Jones HP, Aldridge B, Boss-Williams K, et al. A role for B cells in facilitating defense against an NK cell-sensitive lung metastatic tumor is revealed by stress [J]. J Neuroimmunol, 2017, 313: 99-108.
|
| 23 |
Lee HE, Luo L, KRoneman T, et al. Increased plasma cells and decreased B-cells in tumor infiltrating lymphocytes are associated with worse survival in lung adenocarcinomas [J]. J Clin Cell Immunol, 2020, 11(1): 584.
|
| 24 |
Chang X, Zhao J, Zhou Y, et al. MiR-7 deficiency promotes Th1 polarization of CD4(+)T cells and enhances the antitumor effect in adoptive cell therapy for lung cancer [J]. Immunol Res, 2024, 72(1): 134-146.
|
| 25 |
Aktar T, Modak S, Majumder D, et al. A detailed insight into macrophages′role in shaping lung carcinogenesis [J]. Life Sci, 2024, 352: 122896.
|
| 26 |
De Oliveira JB, Silva SB, Fernandes IL, et al. Dendritic cell-based immunotherapy in non-small cell lung cancer: a comprehensive critical review [J]. Front Immunol, 2024, 15: 1376704.
|
| 27 |
Chotiner JY, Wolgemuth DJ, Wang PJ. Functions of cyclins and CDKs in mammalian gametogenesisdagger [J]. Biol Reprod, 2019, 101(3): 591-601.
|
| 28 |
Huang Y, Zhong L, Nie K, et al. Identification of LINC00665-miR-let-7b-CCNA2 competing endogenous RNA network associated with prognosis of lung adenocarcinoma [J]. Sci Rep, 2021, 11(1): 4434.
|
| 29 |
Wang X, Xiao H, Wu D, et al. miR-335-5p regulates cell cycle and metastasis in lung adenocarcinoma by targeting CCNB2 [J]. Onco Targets Ther, 2020, 13: 6255-6263.
|
| 30 |
Bao B, Yu X, Zheng W. MiR-139-5p targeting CCNB1 modulates proliferation, migration, invasion and cell cycle in lung adenocarcinoma [J]. Mol Biotechnol, 2022, 64(8): 852-860.
|
| 31 |
Kim DH, Kim H, Choi YJ, et al. Exosomal PD-L1 promotes tumor growth through immune escape in non-small cell lung cancer [J]. Exp Mol Med, 2019, 51(8): 1-13.
|