切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2017, Vol. 10 ›› Issue (01) : 10 -14. doi: 10.3877/cma.j.issn.1674-6902.2017.01.003

所属专题: 文献

论著

高原不同海拔暴露对肺通气功能及代偿能力的影响
胡明冬1, 李琦1, 贺斌峰1, 王丹1, 刘刚1, 徐静1, 刘双林1, 王关嵩1, 黄岚1, 徐剑铖1,()   
  1. 1. 400037 重庆,第三军医大学新桥医院呼吸内科·全军呼吸内科研究所
  • 收稿日期:2016-10-26 出版日期:2017-02-25
  • 通信作者: 徐剑铖
  • 基金资助:
    国家卫生部卫生行业科研专项项目(201002012); 军队青年培养项目资助(13QNP114)

Study on pulmonary ventilation function and it′s compensation in different high altitude

Mingdong Hu1, Qi Li1, Binfeng He1, Dan Wang1, Gang Liu1, Jing Xu1, Shuanglin Liu1, Guansong Wang1, Lan Huang1, Jiancheng Xu1,()   

  1. 1. Army Institute of Respiratory Diseases, Department of Respiratory Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
  • Received:2016-10-26 Published:2017-02-25
  • Corresponding author: Jiancheng Xu
  • About author:
    Corresponding author: Xu Jiancheng, Email:
引用本文:

胡明冬, 李琦, 贺斌峰, 王丹, 刘刚, 徐静, 刘双林, 王关嵩, 黄岚, 徐剑铖. 高原不同海拔暴露对肺通气功能及代偿能力的影响[J]. 中华肺部疾病杂志(电子版), 2017, 10(01): 10-14.

Mingdong Hu, Qi Li, Binfeng He, Dan Wang, Gang Liu, Jing Xu, Shuanglin Liu, Guansong Wang, Lan Huang, Jiancheng Xu. Study on pulmonary ventilation function and it′s compensation in different high altitude[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2017, 10(01): 10-14.

目的

探讨急性暴露不同海拔的平原人群肺通气功能的变化情况以及潜在的机制。

方法

从急进高原的某部官兵中筛选出100例未出现急性高原病的受试者,对其在平原(300 m)、海拔3 700 m和4 100 m的高原地区分别进行肺通气功能检测、6 min步行试验和采集空腹血,利用ELISA检测血浆低氧诱导因子-1α(HIF-1α)和内皮素-1(ET-1)的水平,连续监测法检测血浆血管紧张素转换酶(ACE)的活性。对不同海拔高度受试者用力肺活量(FVC)和6 min行走距离进行相关性分析。

结果

海拔3 700 m和4 200 m时受试者的FVC、6 min行走的距离显著低于在平原时(P<0.05),并且在4 200 m时受试者的FVC和6 min行走的距离较在3 700 m也显著降低(P<0.05);在4 200 m时受试者的FEV1、6 min步行试验后呼吸频显著高于在平原(300 m)时(P<0.05)。受试者在海拔300 m和3 700 m之间以及在海拔300 m和4 200 m之间FVC的改变量和6 min行走距离的该变量呈正相关。海拔3 700 m和4 200 m时受试者的ET-1显著高于在平原(300 m)时(P<0.05),并且在4 200 m时受试者的血浆ET-1水平较在3 700 m也显著升高(P<0.05);在4 200 m和3 700 m时受试者的HIF-1α水平和ACE活性著高于在平原(300 m)时(P<0.05)。

结论

急性暴露高海拔的环境使肺通气功能下降,并伴随心肺代偿能力的下降,其可能是由于肺间质少量的液体储留所致。

Objective

To study the change of pulmonary ventilation function of plainsman in different high altitude and potential mechanism.

Method

One hundreds subjects was rapidly elevated to high altitude 3 700 m and then 4 200 m from sea level (300 m). They had not suffered with acute mountain illness. The pulmonary ventilation function and 6 minute walking test (6MWT) of subjects were evaluated and their fasting blood samples had been collected in different altitudes. The plasma hypoxia inducible factor-1α(HIF-1α) and endothelin-1(ET-1) levels were detected by ELISA, and the activity of plasma angiotensin converting enzyme(ACE) had been measured by continuous monitoring method. The correlation of the change of forced vital capacity(FVC) and 6 min walk distance(6MWD) among different altitude was analyzed by Pearson analysis.

Result

The FVC and 6MWD of subjects in 3 700 m and 4 200 m were significant decreased, compared with in sea levels (P<0.05). And the FVC and 6MWD of subjects in 4 200 m was lower than in 3 700 m (P<0.05). The FEV1 and respiratory rate was high in 4 200 m than in 300 m (P<0.05). The change of FVC and 6MWD between 300 m and 3 700 m or 4 200 m was notable positive correlation (P<0.05). Compared to plasma ET-1 levels of subjects in sea levels, they were elevated in 3 700 m and 4 200 m (P<0.05) and the levels of ET-1 were higher in 4 200 m than in 3 700 m (P<0.05). The levels of plasma HIF-1α and activity of ACE of subjects was significant higher in 4 200 m and 3 700 m than in sea levels (P<0.05).

Conclusions

Pulmonary ventilation function and it′s compensation descend when subjects rapidly expose at high altitude, which might due to a small amount of pulmonary interstitial fluid retention.

图1 不同海拔对肺功能的影响;注:*:与在海拔3 700 m时测量值比较,P<0.05;^:与在海拔300 m时测量值比较,P<0.05
表1 受试者在不同海拔6MWT后的生理参数
表2 不同海拔6 min步行试验行走距离和FVC改变量的相关性分析
图2 不同海拔对受试者血浆不同海拔受试者血浆HIF-1α、ET-1和ACE的水平;注:*:与在海拔3 700 m米时测量值比较,P<0.05;^:与在海拔300 m米时测量值比较,P<0.05
1
Macnab AJ, Vachon J, Susak LE, et al. In-flight stabilization of oxygen saturation by control of altitude for severe respiratory insufficiency[J]. Aviat Space Environ Med, 1990, 61(9): 829-832.
2
Connolly DM, D′Oyly TJ, McGown AS, et al. Lung volumes, pulmonary ventilation, and hypoxia following rapid decompression to 60,000 ft (18,288 m)[J]. Aviat Space Environ Med, 2013, 84(6): 551-559.
3
Compte-Torrero L, Botella de MJ, de Diego-Damia A, et al. Changes in spirometric parameters and arterial oxygen saturation during a mountain ascent to over 3000 meters[J]. Arch Bronconeumol, 2005, 41(10): 547-552.
4
Montserrat JM, Ricard T, Mateu M, et al. Respiratory response to chemical stimuli and exercise capacity under conditions of acute hypoxia in elite mountain climbers[J]. Rev Esp Fisiol, 1991, 47(4): 193-199.
5
Pingitore A, Garbella E, Piaggi P, et al. Early subclinical increase in pulmonary water content in athletes performing sustained heavy exercise at sea level: ultrasound lung comet-tail evidence[J]. Am J Physiol Heart Circ Physiol, 2011, 301(5): H2161-H2167.
6
Thompson EB, Farrow L, Hunt JE, et al. Brachial artery characteristics and micro-vascular filtration capacity in rock climbers[J]. Eur J Sport Sci, 2015, 15(4): 296-304.
7
Wong EK, Ng GY. Strength profiles of shoulder rotators in healthy sport climbers and nonclimbers[J]. J Athl Train, 2009, 44(5): 527-530.
8
Hales CA, Kazemi H. Hypoxic vascular response of the lung: effect of aminophylline and epinephrine[J]. Am Rev Respir Dis, 1974, 110(2): 126-132.
9
Maron MB, Hamilton LH, Maksud MG. Alterations in pulmonary function consequent to competitive marathon running[J]. Med Sci Sports, 1979, 11(3): 244-249.
10
Kronenberg RS, Safar P, Leej, et al. Pulmonary artery pressure and alveolar gas exchange in man during acclimatization to 12,470 ft[J]. J Clin Invest, 1971, 50(4): 827-837.
11
Grissom CK, Weaver LK, Clemmer TP, et al. Theoretical advantage of oxygen treatment for combat casualties during medical evacuation at high altitude[J]. J Trauma, 2006, 61(2): 461-467.
12
Welsh CH, Wagner PD, Reeves JT, et al. Operation Everest. Ⅱ:Spirometric and radiographic changes in acclimatized humans at simulated high altitudes[J]. Am Rev Respir Dis, 1993,147(5):1239-1244.
13
Cremona G, Asnaghi R, Baderna P, et al. Pulmonary extravascular fluid accumulation in recreational climbers: a prospective study[J]. Lancet, 2002, 359(9303): 303-309.
14
Muza SR, Jackson R, Rock PB, et al. Interaction of chemical defense clothing and high terrestrial altitudes on lift/carry and marksmanship performance[J]. Aviat Space Environ Med, 2000, 71(7): 668-677.
15
Pratali L, Cavana M, Sicari R, et al. Frequent subclinical high-altitude pulmonary edema detected by chest sonography as ultrasound lung comets in recreational climbers[J]. Crit Care Med, 2010, 38(9): 1818-1823.
16
Deboeck G, Moraine JJ, Naeije R. Respiratory muscle strength may explain hypoxia-induced decrease in vital capacity[J]. Med Sci Sports Exerc, 2005, 37(5): 754-758.
17
Sharma S, Brown B. Spirometry and respiratory muscle function during ascent to higher altitudes[J]. Lung, 2007, 185(2): 113-121.
18
Dunham-Snary KJ, Danchen W, Sykes EA, et al. Hypoxic pulmonary vasoconstriction: from molecular mechanisms to medicine[J]. Chest, 2016, doi: 10.1016/j.chest.2016.09.001.
19
Endo A, Ayusawa M, Minato M, et al. Endogenous nitric oxide and endothelin-1 in persistent pulmonary hypertension of the newborn[J]. Eur J Pediatr, 2001, 160(4): 217-222.
20
Hu R, Dai A, Tan S. Hypoxia-inducible factor 1 alpha upregulates the expression of inducible nitric oxide synthase gene in pulmonary arteries of hyposic rat[J]. Chin Med J (Engl), 2002, 115(12): 1833-1837.
21
Droma Y, Hayano T, Takabayashi Y, et al. Endothelin-1 and interleukin-8 in high altitude pulmonary oedema[J]. Eur Respir J, 1996, 9(9): 1947-1949.
22
Bernardi S, Michelli A, Zuolo G, et al. Update on RAAS Modulation for the treatment of diabetic cardiovascular disease[J]. J Diabetes Res, 2016,2016: 8917578.
23
Masschelein E, Puype J, Broos S, et al. A genetic predisposition score associates with reduced aerobic capacity in response to acute normobaric hypoxia in lowlanders[J]. High Alt Med Biol, 2015, 16(1): 34-42.
24
Favier R, Spielvogel H, Desplanches D, et al. Maximal exercise performance in chronic hypoxia and acute normoxia in high-altitude natives[J]. J Appl Physiol, 1995, 78(5): 1868-1874.
25
Brutsaert TD. Population genetic aspects and phenotypic plasticity of ventilatory responses in high altitude natives[J]. Respir Physiol Neurobiol, 2007, 158(2-3): 151-160.
26
Calbet JA, Rådegran G, Boushel R, et al. On the mechanisms that limit oxygen uptake during exercise in acute and chronic hypoxia: role of muscle mass[J]. J Physiol, 2009, 587(2): 477-490.
27
Masschelein E, Van Thienen R, Thomis M, et al. High twin resemblance for sensitivity to hypoxia[J]. Med Sci Sports Exerc, 2015, 47(1): 74-81.
28
Hennis PJ, O′Doherty AF, Levett DZ, et al. Genetic factors associated with exercise performance in atmospheric hypoxia[J]. Sports Med, 2015, 45(5): 745-761.
[1] 刘璐, 赖倩. 雾化吸入布地奈德治疗AECOPD合并2型糖尿病患者疗效及对肺通气功能和糖代谢的影响[J]. 中华肺部疾病杂志(电子版), 2021, 14(04): 427-430.
[2] 张谷香, 裴志强, 丁瑞阳, 刘芸芸. 6MWD与COPD患者肺与认知功能的关系及其对预后的意义[J]. 中华肺部疾病杂志(电子版), 2021, 14(03): 347-349.
[3] 吴长东, 侯铭, 杨嵘, 张静, 范蕾, 梁玥, 王萍, 贺艳, 姜兴, 薛克栋. 联合检测二维超声心动图、BNP、6MWT、MMRC对慢性阻塞性肺疾病急性加重期患者右心功能不全的诊断意义[J]. 中华肺部疾病杂志(电子版), 2019, 12(04): 441-444.
[4] 朱默然, 许德凤, 赵云峰, 刘锦铭, 赵蕾. 血清可溶性人基质裂解素2和降钙素原水平的变化在AECOPD患者中的病情评估[J]. 中华肺部疾病杂志(电子版), 2017, 10(02): 187-191.
[5] 张二明, 宋萍萍, 赵春燕, 安欣华, 马石头, 包曹歆, 李敏, 孙培培, 时延伟, 向平超. 北京十家社区40岁以上居民肺通气功能调查及影响因素分析[J]. 中华临床医师杂志(电子版), 2021, 15(05): 375-381.
[6] 冯永拿, 唐婷玉, 吕方超, 陈岚. 小气道功能与老年冠心病的相关性[J]. 中华老年病研究电子杂志, 2022, 09(03): 17-20.
[7] 开赛尔·艾则孜, 祖木来提·吐尔逊, 杨晓红. 研究胃食管反流对哮喘患者肺通气功能的影响[J]. 中华胃食管反流病电子杂志, 2018, 05(02): 68-71.
阅读次数
全文


摘要