切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2017, Vol. 10 ›› Issue (02) : 157 -162. doi: 10.3877/cma.j.issn.1674-6902.2017.02.009

所属专题: 文献

论著

脂多糖诱导巨噬细胞中核受体协同抑制因子启动子甲基化对炎症因子的调控作用
郭小莉1, 刘霞1, 雷传江1, 王关嵩1, 王建春1,()   
  1. 1. 400037 重庆,第三军医大学新桥医院呼吸内科
  • 收稿日期:2017-02-07 出版日期:2017-04-20
  • 通信作者: 王建春
  • 基金资助:
    国家自然科学基金资助项目(81170066)

Lipopolysaccharide modulation the promoter methylation of nuclear receptor corepressor regulated inflammation mediators in macrophages

Xiaoli Guo1, Xia Liu1, Chuanjiang Lei1, Guansong Wang1, Jianchun Wang1,()   

  1. 1. Department of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
  • Received:2017-02-07 Published:2017-04-20
  • Corresponding author: Jianchun Wang
  • About author:
    Corresponding author: Wang Jianchun, Email:
引用本文:

郭小莉, 刘霞, 雷传江, 王关嵩, 王建春. 脂多糖诱导巨噬细胞中核受体协同抑制因子启动子甲基化对炎症因子的调控作用[J]. 中华肺部疾病杂志(电子版), 2017, 10(02): 157-162.

Xiaoli Guo, Xia Liu, Chuanjiang Lei, Guansong Wang, Jianchun Wang. Lipopolysaccharide modulation the promoter methylation of nuclear receptor corepressor regulated inflammation mediators in macrophages[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2017, 10(02): 157-162.

目的

探讨核受体协同抑制因子(NCOR)在脂多糖(LPS)诱导巨噬细胞炎症反应中的作用及其调控机制。

方法

1 μg/ml的LPS分别处理小鼠巨噬细胞RAW264.7 24 h和48 h,应用Western blot和Real time-PCR检测NCOR的表达水平以及肿瘤坏死因子-α(TNF-α)、白细胞介素-6(IL-6) mRNA水平,荧光素酶报告基因检测核因子-κB (NF-κB)的启动子活性。LPS处理细胞48 h后,应用MSP检测NCOR启动子是否发生甲基化以及Western blot检测DNMT3b的表达变化。Real time-PCR检测5′-aza和LPS联合处理细胞后NCOR mRNA的表达水平;转染DNMT3b siRNA后,分别应用Western blot和Real time-PCR检测DNMT3b的表达水平,以及DNMT3b siRNA和LPS联合作用下NCOR、TNF-α、IL-6的表达水平和NF-κB的启动子活性。

结果

LPS干预细胞24、48 h后,NCOR蛋白和mRNA表达显著下调(P<0.05),而TNF-α、IL-6 mRNA表达水平、DNMT3b蛋白的表达水平以及NF-κB的启动子活性显著上升(P<0.05)。MSP检测说明LPS可介导NCOR的启动子甲基化。用5′-aza和LPS联合处理细胞后NCOR mRNA水平较LPS组有显著上升(P<0.05)。采用DNMT3b siRNA可显著下调DNMT3b蛋白和mRNA水平,并可部分逆转LPS介导的抑制NCOR表达的效应,抑制TNF-α、IL-6的表达水平和NF-κB的启动子活性(P<0.05)。

结论

NCOR启动子的甲基化是LPS介导巨噬细胞炎症反应发生、发展的关键步骤,其可作为治疗ALI/ARDS的潜在靶点。

Objective

To investigate the role and potential mechanism of nuclear receptor corepressor (NOCR) at lipopolysaccharide(LPS) mediation inflammation response in macrophages.

Methods

Western blot, realtime-PCR and luciferase assays was used to detect the expression of NCOR, interleukin-6(IL-6) and tumour necrosisfactor(TNF-α) and promoter activity of nuclear factor-κB (NF-κB) when RAW264.7 cells were treated with 1 μg/ml LPS. The promoter methylation of NCOR was analyzed by methylating-specific PCR(MSP) analysis, and the protein of DNMT3b was evaluated by western blot after cells stimulation with 1 μg/ml LPS for 48 h. Real time-PCR was also used to evaluate the expression of NCOR mRNA when RAW264.7 was treated with 1 μg/ml LPS combine with 1μM 5′-aza. After DNMT3b siRNA was transfected into RAW264.7 for 48 h, the mRNA and protein of DNMT3b was detected by western blot and real time-PCR. Additional, the expression of NCOR, TNF-α and IL-6 and NF-κB activity was analyzed after RAW264.7 was treated with 1 μg/ml LPS combine with DNMT3b siRNA.

Results

The expression of NCOR mRNA and protein was significantly decreased (P<0.05) and the expression of TNF-α and IL-6 mRNA, DNMT3b protein and activity of NF-κB was elevated (P<0.05) after cells was treated with 1 μg/ml LPS for 24 and 48 h, respectively. MSP assay showed LPS could modulate the NCOR promoter methylation. The expression of DNMT3b mRNA and protein was decreased after cells were transfected by DNMT3b siRNA. Additionally, down-regulation of DNMT3b was partly reversed LPS modulation the inhibition of NCOR, and decreased the expression of TNF-α and IL-6 mRNA, and activity of NF-κB (P<0.05).

Conclusion

NCOR promoter methylation is key step of occurrence and development of LPS mediation inflammation response. It might be a potential target for acute lung injury / acute respiratory distress syndrome (ALI/ARDS) treatment.

表1 基因引物序列
图1 LPS处理RAW264.7细胞后NCOR、IL-6和TNF-α表达以及NF-κB活性的变化,1 μg/ml LPS分别处理RAW264.7细胞0 h、24 h、48 h;注:A. Western blot检测NCOR蛋白的表达水平;B: Real time-PCR检测NCOR mRNA的表达水平;*与0 h比较,P<0.05;C:荧光素酶报告基因检测NF-κB启动子活性;*与0 h比较,P<0.05,^与24 h比较,P<0.05;D: Real time-PCR检测IL-6和TNF-α mRNA的表达水平;*与0 h比较,P<0.05,^与24 h比较,P<0.05
图2 LPS处理RAW264.7细胞对NCOR启动子甲基化的影响;注:A:MSP检测1 μg/ml LPS处理细胞48 h后,NCOR启动子甲基化情况。U代表非甲基化NCOR DNA片段;M代表甲基化NCOR DNA片段;B:Real time-PCR检测NCOR mRNA的表达水平。*与control组比较,P<0.05;^与LPS组比较,P<0.05;C: Western blot检测1 μg/ml LPS处理细胞48 h后DNMT3b蛋白的表达水平
图3 下调DNMT3b对NCOR表达的影响;注:A和B: Real time-PCR和western blot检测DNMT3b siRNA及NC转染RAW264.7细胞后,NCOR mRNA和蛋白的表达水平,*与NC组比较,P<0.05;C和D: DNMT3b siRNA转染24 h后再用1 μg/ml LPS处理24 h,Real time-PCR和western blot检测NCOR mRNA和蛋白的表达水平,*与NC组比较,P<0.05;^ DNMT3b siRNA组比较,P<0.05;# NC+LPS组比较,P<0.05
图4 下调DNMT3b对NF-κB活性及IL-6和TNF-α表达的影响;注:A:荧光素酶报告基因检测NF-κB启动子活性;B: Real time-PCR检测IL-6和TNF-α mRNA的表达水平,*与NC组比较,P<0.05;^ DNMT3b siRNA组比较,P<0.05;#NC+LPS组比较,P<0.05
1
宋旸,蒋昊翔,张永红,等. 急性呼吸窘迫综合征药物研究进展[J/CD]. 中华肺部疾病杂志(电子版), 2015, 8(6): 769-772.
2
Rubenfeld GD, Caldwell E, Peabody E, et al. Incidence and outcomes of acute lung injury[J]. N Engl J Med, 2005, 353(16): 1685-1693.
3
Zambon M, Vincent JL. Mortality rates for patients with acute lung injury/ARDS have decreased over time[J]. Chest, 2008, 133(5): 1120-1127.
4
Villar J, Sulemanji D, Kacmarek RM. The acute respiratory distress syndrome: incidence and mortality, has it changed?[J]. Curr Opin Crit Care, 2014, 20(1): 3-9.
5
Opal SM, Dellinger RP, Vincent JL, et al. The next generation of sepsis clinical trial designs: what is next after the demise of recombinant human activated protein C?*[J]. Crit Care Med, 2014, 42(7): 1714-1721.
6
Matthay MA, Ware LB, Zimmerman GA. The acute respiratory distress syndrome[J]. J Clin Invest, 2012, 122(8): 2731-2740.
7
Hong-Wei G, Lan L, De-Guo X, et al. NCoR negatively regulates adipogenic differentiation of mesenchymal stem cells[J]. In Vitro Cell Dev Biol Anim, 2015, 51(7): 749-758.
8
Wong MM, Guo C, Zhang J. Nuclear receptor corepressor complexes in cancer: mechanism, function and regulation[J]. Am J Clin Exp Urol, 2014, 2(3): 169-187.
9
Heldring N, Nyman U, Lönnerberg P, et al. NCoR controls glioblastoma tumor cell characteristics[J]. Neuro Oncol, 2014, 16(2): 241-249.
10
Jennewein C, Kuhn AM, Schmidt MV, et al. Sumoylation of peroxisome proliferator-activated receptor gamma by apoptotic cells prevents lipopolysaccharide-induced NCoR removal from kappaB binding sites mediating transrepression of proinflammatory cytokines[J]. J Immunol, 2008, 181(8): 5646-5652.
11
Barrès R, Yan J, Egan B, et al. Acute exercise remodels promoter methylation in human skeletal muscle[J]. Cell Metab, 2012, 15(3): 405-411.
12
Crevillén P, Yang H, Cui X, et al. Epigenetic reprogramming that prevents transgenerational inheritance of the vernalized state[J]. Nature, 2014, 515(7528): 587-590.
13
Qiu W, Baccarelli A, Carey VJ, et al. Variable DNA methylation is associated with chronic obstructive pulmonary disease and lung function[J]. Am J Respir Crit Care Med, 2012, 185(4): 373-381.
14
Chouliaras L, Mastroeni D, Delvaux E, et al. Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer′s disease patients[J]. Neurobiol Aging, 2013, 34(9): 2091-2099.
15
Zhang XQ, Lv CJ, Liu XY, et al. Genome wide analysis of DNA methylation in rat lungs with lipopolysaccharide induced acute lung injury[J]. Mol Med Rep, 2013, 7(5): 1417-1424.
16
Lei C, Jiao Y, He B, et al. RIP140 down-regulation alleviates acute lung injury via the inhibition of LPS-induced PPARγ promoter methylation[J]. Pulm Pharmacol Ther, 2016, 37: 57-64.
17
Lin KL, Suzuki Y, Nakano H, et al. CCR2+ monocyte-derived dendritic cells and exudate macrophages produce influenza-induced pulmonary immune pathology and mortality[J]. J Immunol, 2008, 180(4): 2562-2572.
18
Medzhitov R, Horng T. Transcriptional control of the inflammatory response[J]. Nat Rev Immunol, 2009, 9(10): 692-703.
19
Ogawa S, Lozach J, Jepsen K, et al. A nuclear receptor corepressor transcriptional checkpoint controlling activator protein 1-dependent gene networks required for macrophage activation[J]. Proc Natl Acad Sci U S A, 2004, 101(40): 14461-14466.
20
Lu R, Hu X, Zhou J, et al. COPS5 amplification and overexpression confers tamoxifen-resistance in ERα-positive breast cancer by degradation of NCoR[J]. Nat Commun, 2016, 7: 12044.
21
Glass CK, Saijo K. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells[J]. Nat Rev Immunol, 2010, 10(5): 365-376.
22
Xu F, Mao C, Ding Y, et al. Molecular and enzymatic profiles of mammalian DNA methyltransferases: structures and targets for drugs[J]. Curr Med Chem, 2010, 17(33): 4052-4071.
23
Bogdanović O, Veenstra GJ. DNA methylation and methyl-CpG binding proteins: developmental requirements and function[J]. Chromosoma, 2009, 118(5): 549-565.
[1] 孙艺玮, 陈炜, 秦巍, 杜景辰, 孟昕, 周永军. 血管腔内介入治疗糖尿病足合并下肢动脉硬化闭塞症患者术后再狭窄与血清炎症因子的相关性[J]. 中华损伤与修复杂志(电子版), 2024, 19(01): 34-40.
[2] 陈大敏, 曹晓刚, 曹能琦. 肥胖对胃癌患者手术治疗效果的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 651-653.
[3] 杜贵伟, 陆勇, 成博, 贺薏, 梁爽. 钬激光碎石术术后联合坦索罗辛治疗对输尿管结石患者的影响分析[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 491-496.
[4] 陈向军, 王在强, 王博荣, 王莉, 方芳, 金发光, 王光辉. PM2.5通过激活颗粒酶B/IL-18信号通路促进炎症因子表达[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 207-211.
[5] 方慧慧, 方明, 黄娟, 张华, 王晓娟. 布地格福吸入治疗对COPD患者IL-6、CRP水平及肺功能的影响[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 91-94.
[6] 方晓铵, 熊欢庆, 李玉娟, 刘刚, 金发光. E3泛素连接酶COP-1在脂多糖致小鼠急性肺损伤中的意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 14-18.
[7] 何花, 周玉皆, 李田. 鸦胆子油乳辅助PC方案化疗对NSCLC免疫功能和炎症因子的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 697-699.
[8] 刘剑, 张燕, 刘春桂, 吉浩明, 鲁小敏. 贝伐珠单抗辅助治疗对晚期非鳞NSCLC患者炎症、免疫和营养指数的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 694-696.
[9] 张婵, 吕瑶, 张小燕, 张鸣青. 不同时机局部神经阻滞在开腹肝切除中的镇痛效果比较[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 189-194.
[10] 史亚波, 李扬, 黄长文. 缺血-再灌注损伤促进肝癌复发机制的研究进展[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 96-99.
[11] 戴伟川, 郭协力, 方仲宁, 蔡文华, 洪天生, 田夏阳. 显微镜下周围神经松解术治疗腰椎间盘突出症术后残余神经症状的疗效分析[J]. 中华神经创伤外科电子杂志, 2024, 10(02): 84-90.
[12] 李秀玲, 连少锋, 荣刘涛, 李登峰, 饶蕴玉. 利巴韦林联合复方嗜酸乳杆菌治疗轮状病毒肠炎患儿的临床研究[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 369-372.
[13] 吕涛, 张琨, 李晨. 芍黄安肠汤治疗重度活动期溃疡性结肠炎大肠湿热证患者的疗效及对肠黏膜屏障、炎症因子和免疫功能的影响[J]. 中华消化病与影像杂志(电子版), 2024, 14(01): 16-20.
[14] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[15] 王永康, 买买提·依斯热依力, 克力木·阿不都热依木. 不同细胞因子与胃食管反流病的研究进展[J]. 中华胃食管反流病电子杂志, 2023, 10(04): 207-211.
阅读次数
全文


摘要