切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2017, Vol. 10 ›› Issue (02) : 163 -167. doi: 10.3877/cma.j.issn.1674-6902.2017.02.010

所属专题: 文献

论著

SIRT1减弱对脂多糖致急性呼吸窘迫综合征小鼠的促炎作用
赵维1, 刘俊彦1, 李玉英2,()   
  1. 1. 400037 重庆,第三军医大学新桥医院呼吸内科
    2. 100048 北京,中国人民解放军海军总医院呼吸内科
  • 收稿日期:2017-01-08 出版日期:2017-04-20
  • 通信作者: 李玉英
  • 基金资助:
    国家自然科学基金资助项目(81370167)

Effect of SIRT1 weakening on inflammation in mice with acute respiratory distress syndrome induced by lipopolysaccharide

Wei Zhao1, Junyan Liu1, Yuying Li2,()   

  1. 1. Department of Respiration, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
    2. Department of Respiration, Navy General Hospital PLA China, Beijing 100048, China
  • Received:2017-01-08 Published:2017-04-20
  • Corresponding author: Yuying Li
  • About author:
    Corresponding author: Li Yuying, Email:
引用本文:

赵维, 刘俊彦, 李玉英. SIRT1减弱对脂多糖致急性呼吸窘迫综合征小鼠的促炎作用[J]. 中华肺部疾病杂志(电子版), 2017, 10(02): 163-167.

Wei Zhao, Junyan Liu, Yuying Li. Effect of SIRT1 weakening on inflammation in mice with acute respiratory distress syndrome induced by lipopolysaccharide[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2017, 10(02): 163-167.

目的

探讨SIRT1对脂多糖(LPS)诱导的急性呼吸窘迫综合征(ARDS)小鼠炎症反应的作用及其机制。

方法

采用SIRT1基因敲减小鼠SIRT1+/-与野生型小鼠,qRT-PCR,Western Blot检测两种小鼠肺组织中的相关基因表达差异。两种小鼠用LPS腹腔注射法造模,同时设生理盐水对照组,观察肺组织病理形态学变化,测定肺湿干比(W/D比),BCA法测定支气管肺泡灌洗液(BALF)中总蛋白浓度,ELISA法测定BALF及血浆中炎症因子TNF-α、IL-6的含量,Western Blot检测肺组织p-p38MAPK、p38MAPK、p-ATF2的表达变化。

结果

与野生型小鼠相比,SIRT1+/-肺组织中SIRT1在mRNA表达和蛋白表达均显著降低,差异有统计学意义(P<0.01)。LPS致ARDS后,两种小鼠病理形态学观察均表现为肺组织炎症细胞浸润,肺泡结构破坏,间质水肿,肺泡间隔增厚,而SIRT1+/-小鼠肺组织破坏更严重。在SIRT1+/-小鼠中,肺W/D比值,BALF中总蛋白浓度,BALF及血浆中炎症因子肿瘤坏死因子-α(TNF-α)、白细胞介素-6(IL-6)的含量,均明显高于野生型小鼠(P<0.05),肺组织p-p38MAPK/p38MAPK、p-ATF2的表达增加也更显著(P<0.05)。

结论

SIRT1基因在LPS致伤ARDS小鼠的炎症进程中起着非常重要的作用,其机制可能与Sirt1诱导的p38 MAPK-p-ATF2信号通路的活化增强有关。

Objective

To investigate the effect and mechanism of SIRT1 on inflammation in acute respiratory distress syndrome (ARDS) mice induced by lipopolysaccharide(LPS) .

Methods

The differences of related gene expression of lung tissues in two mice, including the SIRT1+ /- mice with SIRT1 gene is knocked down and the wild-type mice, were detected by qRT-PCR and Western Blot. Then the ARDS model was induced in two kinds of mice by intraperitoneal injection of LPS, and the control group were injected with equal volume of saline. The pathological changes of lung tissue were observed by HE staining and the lung W/D ratio were calculated, the total protein concentration in BALF were detected by BCA, the levels of inflammatory factor tumour necrosis factor-α(TNF-α) and interleukin-6(IL-6) in bronchoalveolar lavage fluid (BALF) and plasma were tested by ELISA, the expression of p38 MAPK, p-p38 MAPK and p-ATF2 in lung tissue were detected by Western Blot.

Results

Compared with wild-type mice, the mRNA and protein expression of SIRT1 in lung tissue in SIRT1+ /- were significantly decreased, The difference was statistically significant(P<0.01). After ARDS induced by LPS, The pathological observation about two kinds of mice both showed infiltration of inflammatory cells in lung tissue, destruction of alveolar structure, edema of interstitial, thickening of alveolar septum, and SIRT1+ /- mice were more severely damaged than wild-type mice. In SIRT1+ /- mice, lung W/D ratio, total protein concentration in BALF, the levels of inflammatory factors TNF-α and IL-6 in BALF and plasma were significantly increased(P<0.05), the expression of p-p38 MAPK/p38 MAPK and p-ATF2 in lung tissues were increased more significantly than in wild-type mice(P<0.05).

Conclusion

The SIRT1 gene plays an important role in the inflammatory process of mice with ARDS induced by LPS, which may be related to the increased activity of p38 MAPK-p-ATF2 signaling pathway.

图1 SIRT1+/-小鼠的基因型鉴定结果
图2 SIRT1在HET小鼠与WT小鼠肺组织中的表达情况;注:A:qRT-PCR分析结果,SIRT1mRNA在肺组织中的相对表达量;B:Western Blot分析结果,SIRT1蛋白在肺组织中的相对表达量。(*P<0.01,n=5)
图3 肺组织病理学变化;注:A:WT对照组(×400);B:HET对照组(×400);C:WT+LPS模型组(×400);D:HET+LPS模型组(×400)
表1 肺组织W/D比和BALF中的总蛋白浓度(n=5,±s)
表2 炎性因子TNF-α、IL-6在BALF和血浆中的浓度(n=5,±s)
图4 肺组织中p-P38 MAPK/P38 MAPK、p-ATF2的表达差异(*P<0.05 vs control,#P<0.05 vs WT,n=5)
1
宋旸,蒋昊翔,张永红,等. 急性呼吸窘迫综合征药物研究进展[J/CD]. 中华肺部疾病杂志(电子版), 2015, 8(6): 769-772.
2
Silva PL, Rocco PR, Pelosi P. FG-4497: a new target for acute respiratory distress syndrome?[J]. Expert Rev Respir Med, 2015, 9(4): 405-409.
3
Ivy JM, Klar AJ, Hicks JB. Cloning and characterization of four SIR genes of saccharomyces cerevisiae[J]. Mol Cell Biol, 1986, 6(2): 688-702.
4
Yang H, Bi Y, Xue L, et al. Multifaceted modulation of SIRT1 in cancer and inflammation[J]. Crit Rev Oncog, 2015, 20(1-2): 49-64.
5
Ma Y, Nie H, Chen H, et al. NAD/NADH metabolism and NAD-dependent enzymes in cell death and ischemic brain injury: current advances and therapeutic implications[J]. Curr Med Chem, 2015, 22(10): 1239-1247.
6
Xie J, Zhang X, Zhang L. Negative regulation of inflammation by SIRT1[J]. Pharmacol Res, 2013, 67(1): 60-67.
7
Vachharajani VT, Liu T, Wang X, et al. Sirtuins link inflammation and metabolism[J]. J Immunol Res, 2016, 2016: 8167273.
8
Archer SL. Pre-B-cell colony-enhancing factor regulates vascular smooth muscle maturation through a NAD-dependent mechanism: recognition of a new mechanism for cell diversity and redox regulation of vascular tone and remodeling[J]. Circ Res, 2005, 97(1): 4-7.
9
Shinozaki S, Chang K, Sakai M, et al. Inflammatory stimuli induce inhibitory S-nitrosylation of the deacetylase SIRT1 to increase acetylation and activation of p53 and p65[J]. Sci Signal, 2014, 7(351): ra106-ra106.
10
Rajendrasozhan S, Yang SR, Kinnula VL, et al. SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2008, 177(8): 861-870.
11
Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases[J]. Science, 2002, 298(5600): 1911-1912.
12
Han J, Sun P. The pathways to tumor suppression via route p38[J]. Trends Biochem Sci, 2007, 32(8): 364-371.
13
Raman M, Chen W, Cobb MH. Differential regulation and properties of MAPKs[J]. Oncogene, 2007, 26(26): 3100-3112.
14
张琳,姜勇,张璐. p38蛋白激酶不同亚型在RAW264.7细胞中的定位[J]. 南方医科大学学报,2000, 20(3): 193-196.
15
Dodeller F, Skapenko A, Kalden JP, et al. The p38 mitogen-activated protein kinase regulates effector functions of primary human CD4 T cells[J]. Eur J Immunol, 2005, 35(12): 3631-3642.
[1] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[2] 杨茂宪, 沈鹏, 王倩倩, 吴旺, 沈永帅, 蒋禛, 徐龙生, 朱建刚, 刘倍倍. 吡啶甲酸镁联合地塞米松对急性呼吸窘迫综合征大鼠的治疗作用研究[J]. 中华危重症医学杂志(电子版), 2024, 17(03): 196-203.
[3] 魏丁, 乔艳艳, 顾兴, 张燕, 李艳燕, 钱卫生, 潘蕾, 高永恒, 金发光. 体外膜肺氧合救治急性呼吸窘迫综合征不良预后危险因素分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 363-367.
[4] 李松栗, 黄蔚, 巢杰, 杨毅, 邱海波. 单核/巨噬细胞来源的细胞外囊泡在急性呼吸窘迫综合征中的研究进展[J]. 中华重症医学电子杂志, 2024, 10(03): 253-257.
[5] 杨永红, 杨莹, 齐红蕾, 刘福瑞, 朱金源. 单细胞测序在急性呼吸窘迫综合征中的应用进展[J]. 中华重症医学电子杂志, 2024, 10(03): 248-252.
[6] 倪韫晖, 杨毅, 袁雪燕, 邱海波. 胸壁加压在急性呼吸窘迫综合征中的应用和临床进展[J]. 中华重症医学电子杂志, 2024, 10(03): 243-247.
[7] 田学, 谢晖, 王瑞兰. 急性呼吸窘迫综合征相关肺纤维化的研究进展[J]. 中华重症医学电子杂志, 2024, 10(03): 258-264.
[8] 刘悦, 潘纯. 急性呼吸窘迫综合征患者肌松剂滴定的必要性与可行性[J]. 中华重症医学电子杂志, 2024, 10(02): 108-112.
[9] 王永广, 朱鹏, 许千金, 甘桂芬, 石钟山, 潘纯. 急性呼吸窘迫综合征诊断标准亟需更新[J]. 中华重症医学电子杂志, 2024, 10(02): 113-117.
[10] 史楠, 袁雪燕, 邱海波. 肺复张在急性呼吸窘迫综合征中的应用和临床进展[J]. 中华重症医学电子杂志, 2024, 10(02): 118-126.
[11] 孙藏岚, 黄丽丽, 李小雨, 邱海波. 脂质组学在急性呼吸窘迫综合征中的应用和临床进展[J]. 中华重症医学电子杂志, 2024, 10(02): 127-135.
[12] 陈含冰, 储翠林, 邱海波. 急性呼吸窘迫综合征中巨噬细胞死亡方式的研究进展[J]. 中华重症医学电子杂志, 2024, 10(01): 79-84.
[13] 卢梦诗, 刘威, 马加威, 嵇丹丹, 贾璇, 詹心萍, 罗亮. 人工智能在急性呼吸窘迫综合征领域的应用进展[J]. 中华重症医学电子杂志, 2024, 10(01): 66-71.
[14] 李浩南, 张煜彭, 付焱, 冯继伟, 刘凯, 张文凯. 缝隙连接蛋白43在肺部疾病中的研究进展[J]. 中华重症医学电子杂志, 2024, 10(01): 60-65.
[15] 王晶晶, 谢晖, 邓璞钰, 张晨晨, 田学, 谢云, 王瑞兰. 新型冠状病毒感染ARDS患者EIT监测下俯卧位通气成像的改变[J]. 中华重症医学电子杂志, 2024, 10(01): 31-37.
阅读次数
全文


摘要